Publications by authors named "Albert Maydeu-Olivares"

When analyzing genetic data, Structural Equations Modeling (SEM) provides a straightforward methodology to decompose phenotypic variance using a model-based approach. Furthermore, several models can be easily implemented, tested, and compared using SEM, allowing the researcher to obtain valuable information about the sources of variability. This methodology is briefly described and applied to re-analyze a Spanish set of IQ data using the biometric ACE model.

View Article and Find Full Text PDF

The common factor model assumes that the linear coefficients (intercepts and factor loadings) linking the observed variables to the latent factors are fixed coefficients (i.e., common for all participants).

View Article and Find Full Text PDF

We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane.

View Article and Find Full Text PDF

Bartholomew and Leung proposed a limited-information goodness-of-fit test statistic (Y) for models fitted to sparse 2(P ) contingency tables. The null distribution of Y was approximated using a chi-squared distribution by matching moments. The moments were derived under the assumption that the model parameters were known in advance and it was conjectured that the approximation would also be appropriate when the parameters were to be estimated.

View Article and Find Full Text PDF

The likelihood ratio test statistic G(2)(dif) is widely used for comparing the fit of nested models in categorical data analysis. In large samples, this statistic is distributed as a chi-square with degrees of freedom equal to the difference in degrees of freedom between the tested models, but only if the least restrictive model is correctly specified. Yet, this statistic is often used in applications without assessing the adequacy of the least restrictive model.

View Article and Find Full Text PDF

L. L. Thurstone's (1927) model provides a powerful framework for modeling individual differences in choice behavior.

View Article and Find Full Text PDF

Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in their data. To verify this conjecture, we compare the fit of these models to the Social Problem Solving Inventory-Revised, whose scales were designed to be unidimensional.

View Article and Find Full Text PDF