Investigating erosion and river sediment yield in high-mountain areas is crucial for understanding landscape and biogeochemical responses to environmental change. We compile data on contemporary fluvial suspended sediment yield (SSY) and 12 environmental proxies from 151 rivers in High Mountain Asia surrounding the Tibetan Plateau. We demonstrate that glaciers exert a first-order control on fluvial SSYs, with high precipitation nonlinearly amplifying their role, especially in high-glacier cover basins.
View Article and Find Full Text PDFClimate change affects cryosphere-fed rivers and alters seasonal sediment dynamics, affecting cyclical fluvial material supply and year-round water-food-energy provisions to downstream communities. Here, we demonstrate seasonal sediment-transport regime shifts from the 1960s to 2000s in four cryosphere-fed rivers characterized by glacial, nival, pluvial, and mixed regimes, respectively. Spring sees a shift toward pluvial-dominated sediment transport due to less snowmelt and more erosive rainfall.
View Article and Find Full Text PDFRivers originating in High Mountain Asia are crucial lifelines for one-third of the world’s population. These fragile headwaters are now experiencing amplified climate change, glacier melt, and permafrost thaw. Observational data from 28 headwater basins demonstrate substantial increases in both annual runoff and annual sediment fluxes across the past six decades.
View Article and Find Full Text PDFJ Am Water Resour Assoc
April 2019
Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off-channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality - too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed.
View Article and Find Full Text PDFTo study the fluvial interaction between Changjiang River and Poyang Lake, we analyze the observed changes of riverine flux of the mid-upstream of Changjiang River catchment, the five river systems of Poyang Lake and Poyang Lake basin. Inter-annual and seasonal variations of the water discharge and sediment exchange processes between Changjiang River and Poyang Lake are systematically explored to determine the influence of climate change as well as human impact (especially the Three Gorges Dam (TGD)). Results indicate that climate variation for the Changjiang catchment and Poyang Lake watershed is the main factor determining the changes of water exchanges between Changjiang River and Poyang Lake.
View Article and Find Full Text PDFFluvial sediment discharge can vary in response to climate changes and human activities, which in return influences human settlements and ecosystems through coastline progradation and retreat. To understand the mechanisms controlling the variations of fluvial water and sediment discharge for the Ebro drainage basin, Spain, we apply a hydrological model HydroTrend. Comparison of model results with a 47-year observational record (AD 1953-1999) suggests that the model adequately captures annual average water discharge (simulated 408 m(3)s(-1) versus observed 425 m(3)s(-1)) and sediment load (simulated 0.
View Article and Find Full Text PDFOver the last century humans have altered the export of fluvial materials leading to significant changes in morphology, chemistry, and biology of the coastal ocean. Here we present sedimentary, paleoenvironmental and paleogenetic evidence to show that the Black Sea, a nearly enclosed marine basin, was affected by land use long before the changes of the Industrial Era. Although watershed hydroclimate was spatially and temporally variable over the last ~3000 years, surface salinity dropped systematically in the Black Sea.
View Article and Find Full Text PDFWe analyze 4000-year flood history of the lower Yellow River and the history of agricultural development in the middle river by investigating historical writings and quantitative time series data of environmental changes in the river basin. Flood dynamics are characterized by positive feedback loops, critical thresholds of natural processes, and abrupt transitions caused by socio-economic factors. Technological and organizational innovations were dominant driving forces of the flood history.
View Article and Find Full Text PDFData and computer simulations are reviewed to help better define the timing and magnitude of human influence on sediment flux--the Anthropocene epoch. Impacts on the Earth surface processes are not spatially or temporally homogeneous. Human influences on this sediment flux have a secondary effect on floodplain and delta-plain functions and sediment dispersal into the coastal ocean.
View Article and Find Full Text PDFHere we provide global estimates of the seasonal flux of sediment, on a river-by-river basis, under modern and prehuman conditions. Humans have simultaneously increased the sediment transport by global rivers through soil erosion (by 2.3 +/- 0.
View Article and Find Full Text PDF