Hadron therapy is an advanced radiation modality for treating cancer, which currently uses protons and carbon ions. Hadrons allow for a highly conformal dose distribution to the tumour, minimising the detrimental side-effects due to radiation received by healthy tissues. Treatment with hadrons requires sub-millimetre spatial resolution and high dosimetric accuracy.
View Article and Find Full Text PDFRemote measurement of vital sign parameters like heartbeat and respiration rate represents a compelling challenge in monitoring an individual's health in a noninvasive way. This could be achieved by large field-of-view, easy-to-integrate unobtrusive sensors, such as large-area thin-film photodiodes. At long distances, however, discriminating weak light signals from background disturbance demands superior near-infrared (NIR) sensitivity and optical noise tolerance.
View Article and Find Full Text PDFOrganic bulk heterojunction photodiodes (OPDs) attract attention for sensing and imaging. Their detectivity is typically limited by a substantial reverse bias dark current density (J ). Recently, using thermal admittance or spectral photocurrent measurements, J has been attributed to thermal charge generation mediated by mid-gap states.
View Article and Find Full Text PDFLow-dimensional perovskites attract increasing interest due to tunable optoelectronic properties and high stability. Here, it is shown that perovskite thin films with a vertical gradient in dimensionality result in graded electronic bandgap structures that are ideal for photodiode applications. Positioning low-dimensional, vertically-oriented perovskite phases at the interface with the electron blocking layer increases the activation energy for thermal charge generation and thereby effectively lowers the dark current density to a record-low value of 5 × 10 mA cm without compromising responsivity, resulting in a noise-current-based specific detectivity exceeding 7 × 10 Jones at 600 nm.
View Article and Find Full Text PDFMetal halide perovskite photodiodes (PPDs) offer high responsivity and broad spectral sensitivity, making them attractive for low-cost visible and near-infrared sensing. A significant challenge in achieving high detectivity in PPDs is lowering the dark current density (J) and noise current (i). This is commonly accomplished using charge-blocking layers to reduce charge injection.
View Article and Find Full Text PDFWe demonstrate multilevel data storage in organic ferroelectric resistive memory diodes consisting of a phase-separated blend of P(VDF-TrFE) and a semiconducting polymer. The dynamic behaviour of the organic ferroelectric memory diode can be described in terms of the inhomogeneous field mechanism (IFM) model where the ferroelectric components are regarded as an assembly of randomly distributed regions with independent polarisation kinetics governed by a time-dependent local field. This allows us to write and non-destructively read stable multilevel polarisation states in the organic memory diode using controlled programming pulses.
View Article and Find Full Text PDFFerroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires.
View Article and Find Full Text PDFWe demonstrate the design of a multifunctional organic layer by the rational combination of nanosized regions of two functional polymers. Instead of relying on a spontaneous and random phase separation process or on the tedious synthesis of block copolymers, the method involves the nanomolding of a first component, followed by the filling of the resulting open spaces by a second component. We apply this methodology to fabricate organic nonvolatile memory diodes of high density.
View Article and Find Full Text PDFControlling the morphology of soluble small molecule organic semiconductors is crucial for the application of such materials in electronic devices. Using a simple dip-coating process we systematically vary the film drying speed to produce a range of morphologies, including oriented needle-like crystals. Structural characterization as well as electrical transistor measurements show that intermediate drying velocities produce the most uniformly aligned films.
View Article and Find Full Text PDFMiniaturization of biosensors is envisaged by the development of biochips consisting of parallel microarray patterns of binding sites on rigid substrates, such as glass or silicon. Thin plastic substrates are promising flexible alternatives because of the possibility for large-area roll-to-roll manufacturing of disposable chips at lower costs. Mature optical lithography technology faces many challenges when used to pattern flexible foils as a result of the substrate instabilities, especially at higher temperatures.
View Article and Find Full Text PDFButyl, hexyl, and decyl derivatives of the liquid-crystalline organic semiconductor 5,5' '-bis(5-alkyl-2-thienylethynyl)-2,2':5',2' '-terthiophene were synthesized and studied with respect to their structural, optical, and electrical properties. By means of an optimized thermal annealing scheme the hexyl and decyl compounds could be processed into self-assembled monodomain films of up to 150 mm in diameter. These were investigated with X-ray diffractometry, which revealed a clearly single-crystalline monoclinic morphology with lamellae parallel to the substrate.
View Article and Find Full Text PDFA new convenient route for producing unsymmetrically substituted sulfinyl monomers of precursor polymers toward poly(p-phenylene vinylene) is described. Upon treating a symmetrical bissulfonium salt with a thiolate anion, an unexpected high selectivity for the monosubstituted thioethers (90%) is obtained. Optimization of the reaction conditions showed that the stoichiometry of the reactants in this reaction is important to ensure the high selectivity and to prevent unwanted side reactions.
View Article and Find Full Text PDF