Adv Exp Med Biol
February 2025
The eye, a complex sensory organ, integrates the cornea, lens, and choroid to focus light onto retinal photoreceptor cells, converting light into electrical signals for visual interpretation. This intricate process is vital for human perception, enabling navigation, object recognition, and a rich visual experience. The circulatory system plays a crucial role in delivering nutrients, O, and removing waste from cells, contributing to intraocular pressure regulation and maintaining eye structure.
View Article and Find Full Text PDFThe choroid is the thin, vasculature-filled layer of the eye situated between the sclera and the retina, where it serves the metabolic needs of the light-sensing photoreceptors in the retina. Illumination of the interior surface of the back of the eye (fundus) is a critical regulator of subretinal fluid homeostasis, which determines the overall shape of the eye, but it is also important for choroidal perfusion. Noted for having some of the highest blood flow rates in the body, the choroidal vasculature has been reported to lack intrinsic, intravascular pressure-induced (myogenic) autoregulatory mechanisms.
View Article and Find Full Text PDFEmerging small noncoding RNAs (sncRNAs), including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), are critical in various biological processes, such as neurological diseases. Traditional sncRNA-sequencing (seq) protocols often miss these sncRNAs due to their modifications, such as internal and terminal modifications, that can interfere with sequencing. We recently developed panoramic RNA display by overcoming RNA modification aborted sequencing (PANDORA-seq), a method enabling comprehensive detection of modified sncRNAs by overcoming the RNA modifications.
View Article and Find Full Text PDFSeveral hypotheses have been tested to understand whole organ regulation in other organs such as the brain and kidney, but no such hypothesis has yet been proposed for ocular circulations. To some extent resolve this deficit our ex vivo mouse eye perfusion model takes the first step in elucidating the mechanisms controlling the individual components of the ocular circulation. Various isolated ocular vascular preparations have been utilized in studies of ocular vascular biology, physiology, and pharmacology, including studies on both normal and pathological conditions.
View Article and Find Full Text PDFArteriolar smooth muscle cells (SMCs) and capillary pericytes dynamically regulate blood flow in the central nervous system in the face of fluctuating perfusion pressures. Pressure-induced depolarization and Ca elevation provide a mechanism for regulation of SMC contraction, but whether pericytes participate in pressure-induced changes in blood flow remains unknown. Here, utilizing a pressurized whole-retina preparation, we found that increases in intraluminal pressure in the physiological range induce contraction of both dynamically contractile pericytes in the arteriole-proximate transition zone and distal pericytes of the capillary bed.
View Article and Find Full Text PDFPeripheral coupling between the sarcoplasmic reticulum (SR) and plasma membrane (PM) forms signaling complexes that regulate the membrane potential and contractility of vascular smooth muscle cells (VSMCs). The mechanisms responsible for these membrane interactions are poorly understood. In many cells, STIM1 (stromal interaction molecule 1), a single-transmembrane-domain protein that resides in the endoplasmic reticulum (ER), transiently moves to ER-PM junctions in response to depletion of ER Ca stores and initiates store-operated Ca entry (SOCE).
View Article and Find Full Text PDFUnlabelled: Nitric oxide (NO) relaxes vascular smooth muscle cells (SMCs) and dilates blood vessels by increasing intracellular levels of cyclic guanosine monophosphate (cGMP), which stimulates the activity of cGMP-dependent protein kinase (PKG). However, the vasodilator mechanisms downstream of PKG remain incompletely understood. Here, we found that transient receptor potential melastatin 4 (TRPM4) cation channels, which are activated by Ca released from the sarcoplasmic reticulum (SR) through inositol triphosphate receptors (IPRs) under native conditions, are essential for SMC membrane depolarization and vasoconstriction.
View Article and Find Full Text PDFPericytes in the brain are candidate regulators of microcirculatory blood flow because they are strategically positioned along the microvasculature, contain contractile proteins, respond rapidly to neuronal activation, and synchronize microvascular dynamics and neurovascular coupling within the capillary network. Analyses of mice with defects in pericyte generation demonstrate that pericytes are necessary for the formation of the blood-brain barrier, development of the glymphatic system, immune homeostasis, and white matter function. The development, identity, specialization, and progeny of different subtypes of pericytes, however, remain unclear.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a leading cause of dementia and a substantial healthcare burden. Despite this, few treatment options are available for controlling AD symptoms. Notably, neuronal activity-dependent increases in cortical cerebral blood flow (CBF; functional hyperemia) are attenuated in AD patients, but the associated pathological mechanisms are not fully understood at the molecular level.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2020
The essential function of the circulatory system is to continuously and efficiently supply the O and nutrients necessary to meet the metabolic demands of every cell in the body, a function in which vast capillary networks play a key role. Capillary networks serve an additional important function in the central nervous system: acting as a sensory network, they detect neuronal activity in the form of elevated extracellular K and initiate a retrograde, propagating, hyperpolarizing signal that dilates upstream arterioles to rapidly increase local blood flow. Yet, little is known about how blood entering this network is distributed on a branch-to-branch basis to reach specific neurons in need.
View Article and Find Full Text PDFJunctional membrane complexes facilitate excitation-contraction coupling in skeletal and cardiac muscle cells by forming subcellular invaginations that maintain close (≤20 nm) proximity of ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR) with voltage-dependent Ca channels in the plasma membrane. In fully differentiated smooth muscle cells, junctional membrane complexes occur as distributed sites of peripheral coupling. We investigated the role of the cytoskeleton in maintaining peripheral coupling and associated Ca signaling networks within native smooth muscle cells of mouse and rat cerebral arteries.
View Article and Find Full Text PDFBlood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles in the form of an electrical vasodilatory signal. We further demonstrate that this signal is initiated by extracellular K -a byproduct of neural activity-which activates capillary endothelial cell inward-rectifier K (K2.
View Article and Find Full Text PDFReactive oxygen species (ROS) can have divergent effects in cerebral and peripheral circulations. We found that Ca(2+)-permeable transient receptor potential ankyrin 1 (TRPA1) channels were present and colocalized with NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2), a major source of ROS, in the endothelium of cerebral arteries but not in other vascular beds. We recorded and characterized ROS-triggered Ca(2+) signals representing Ca(2+) influx through single TRPA1 channels, which we called "TRPA1 sparklets.
View Article and Find Full Text PDFDopaminergic nuclei in the basal ganglia are highly sensitive to damage from oxidative stress, inflammation, and environmental neurotoxins. Disruption of adenosine triphosphate (ATP)-dependent calcium (Ca2+) transients in astrocytes may represent an important target of such stressors that contributes to neuronal injury by disrupting critical Ca2+-dependent trophic functions. We therefore postulated that plasma membrane cation channels might be a common site of inhibition by structurally distinct cationic neurotoxicants that could modulate ATP-induced Ca2+ signals in astrocytes.
View Article and Find Full Text PDFPhysiology (Bethesda)
September 2014
Endothelial cells and smooth muscle cells of resistance arteries mediate opposing responses to mechanical forces acting on the vasculature, promoting dilation in response to flow and constriction in response to pressure, respectively. In this review, we explore the role of TRP channels, particularly endothelial TRPV4 and smooth muscle TRPC6 and TRPM4 channels, in vascular mechanosensing circuits, placing their putative mechanosensitivity in context with other proposed upstream and downstream signaling pathways.
View Article and Find Full Text PDFRationale: T-type (CaV3.1/CaV3.2) Ca(2+) channels are expressed in rat cerebral arterial smooth muscle.
View Article and Find Full Text PDFMaintaining constant blood flow in the face of fluctuations in blood pressure is a critical autoregulatory feature of cerebral arteries. An increase in pressure within the artery lumen causes the vessel to constrict through depolarization and contraction of the encircling smooth muscle cells. This pressure-sensing mechanism involves activation of two types of transient receptor potential (TRP) channels: TRPC6 and TRPM4.
View Article and Find Full Text PDFProliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca(2+) influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs.
View Article and Find Full Text PDFArterial tone is dependent on the depolarizing and hyperpolarizing currents regulating membrane potential and governing the influx of Ca²⁺ needed for smooth muscle contraction. Several ion channels have been proposed to contribute to membrane depolarization, but the underlying molecular mechanisms are not fully understood. In this review, we will discuss the historical and physiological significance of the Ca²⁺-activated cation channel, TRPM4, in regulating membrane potential of cerebral artery smooth muscle cells.
View Article and Find Full Text PDFThe melastatin transient receptor potential (TRP) channel, TRPM4, is a critical regulator of smooth muscle membrane potential and arterial tone. Activation of the channel is Ca(2+)-dependent, but prolonged exposures to high global Ca(2+) causes rapid inactivation under conventional whole-cell patch clamp conditions. Using amphotericin B perforated whole cell patch clamp electrophysiology, which minimally disrupts cytosolic Ca(2+) dynamics, we recently showed that Ca(2+) released from 1,2,5-triphosphate receptors (IP(3)R) on the sarcoplasmic reticulum (SR) activates TRPM4 channels, producing sustained transient inward cation currents (TICCs).
View Article and Find Full Text PDFThe melastatin (M) transient receptor potential channel (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. We recently reported that PKCδ activity influences smooth muscle cell excitability by promoting translocation of TRPM4 channel protein to the plasma membrane. Here we further investigate the relationship between membrane localization of TRPM4 protein and channel activity in native cerebral arterial myocytes.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2010
The contractile state of vascular smooth muscle cells is regulated by small changes in membrane potential that gate voltage-dependent calcium channels. The melastatin transient receptor potential (TRP) channel TRPM4 is a critical mediator of pressure-induced membrane depolarization and arterial constriction. A recent study shows that the tricyclic compound 9-phenanthrol inhibits TRPM4, but not the related channel TRPM5.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2010
The melastatin (M) transient receptor potential (TRP) channel TRPM4 mediates pressure and protein kinase C (PKC)-induced smooth muscle cell depolarization and vasoconstriction of cerebral arteries. We hypothesized that PKC causes vasoconstriction by stimulating translocation of TRPM4 to the plasma membrane. Live-cell confocal imaging and fluorescence recovery after photobleaching (FRAP) analysis was performed using a green fluorescent protein (GFP)-tagged TRPM4 (TRPM4-GFP) construct expressed in A7r5 cells.
View Article and Find Full Text PDFThe melastatin transient receptor potential (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. Activation of the channel is Ca(2+)-dependent, but prolonged exposure to high (>1 microM) levels of intracellular Ca(2+) causes rapid (within approximately 2 min) desensitization of TRPM4 currents under conventional whole cell and inside-out patch-clamp conditions. The goal of the present study was to establish a novel method to record sustained TRPM4 currents in smooth muscle cells under near-physiological conditions.
View Article and Find Full Text PDF