We establish a general framework using a diffusion approximation to simulate forward-in-time state counts or frequencies for cladogenetic state-dependent speciation-extinction (ClaSSE) models. We apply the framework to various two- and three-region geographic-state speciation-extinction (GeoSSE) models. We show that the species range state dynamics simulated under tree-based and diffusion-based processes are comparable.
View Article and Find Full Text PDFPhylogenetic trees describe relationships between extant species, but beyond that their shape and their relative branch lengths can provide information on broader evolutionary processes of speciation and extinction. However, currently many of the most widely used macro-evolutionary models make predictions about the shapes of phylogenetic trees that differ considerably from what is observed in empirical phylogenies. Here, we propose a flexible and biologically plausible macroevolutionary model for phylogenetic trees where times to speciation or extinction events are drawn from a Coxian phase-type (PH) distribution.
View Article and Find Full Text PDFTheor Popul Biol
December 2019
We consider the problem of estimating the elapsed time since the most recent common ancestor of a finite random sample drawn from a population which has evolved through a Bienaymé-Galton-Watson branching process. More specifically, we are interested in the diffusion limit appropriate to a supercritical process in the near-critical limit evolving over a large number of time steps. Our approach differs from earlier analyses in that we assume the only known information is the mean and variance of the number of offspring per parent, the observed total population size at the time of sampling, and the size of the sample.
View Article and Find Full Text PDF