Lactic acid bacteria (LAB), principally Oenococcus oeni, play crucial roles in wine production, contributing to the transformation of L-malic acid into L-lactic acid during malolactic fermentation (MLF). This fermentation is influenced by different factors, including the initial LAB population and wine stress factors, such as nutrient availability. Yeast mannoproteins can enhance LAB survival in wine.
View Article and Find Full Text PDFFermented beverages, particularly wines, exhibit variable concentrations of organic and phenolic acids, posing challenges in their accurate determination. Traditionally, enzymatic methods or chromatographic analyses, mainly high-performance liquid chromatography (HPLC), have been employed to quantify these compounds individually in the grape must or wine. However, chromatographic analyses face limitations due to the high sugar content in the grape must.
View Article and Find Full Text PDFProgress in oenological biotechnology now makes it possible to control alcoholic (AF) and malolactic (MLF) fermentation processes for the production of wines. Key factors in controlling these processes and enhancing wine quality include the use of selected strains of non-Saccharomyces species, Saccharomyces cerevisiae, and Oenococcus oeni, as well as the method of inoculation (co-inoculation or sequential) and the timing of inoculation. In the present work, we investigated the effects of different inoculation strategies of two Torulaspora delbrueckii (Td-V and Td-P) strains followed by S.
View Article and Find Full Text PDFAs a consequence of alcoholic fermentation (AF) in wine, several compounds are released by yeasts, and some of them are linked to the general quality and mouthfeel perceptions in wine. However, others, such as succinic acid, act as inhibitors, mainly of malolactic fermentation. Succinic acid is produced by non-Saccharomyces and Saccharomyces yeasts during the initial stages of AF, and the presence of some amino acids such as γ-aminobutyric acid (GABA) and glutamic acid can increase the concentration of succinic acid.
View Article and Find Full Text PDFMicrob Biotechnol
January 2024
The potential use of Torulaspora delbrueckii as a starter culture for wine alcoholic fermentation has become a subject of interest in oenological research. The use of this non-Saccharomyces yeast can modulate different wine attributes, such as aromatic substances, organic acids and phenolic compound compositions. Thus, the obtained wines are different from those fermented with Saccharomyces cerevisiae as the sole starter.
View Article and Find Full Text PDFThe use of Torulaspora delbrueckii in the alcoholic fermentation (AF) of grape must is increasingly studied and used in the wine industry. In addition to the organoleptic improvement of wines, the synergy of this yeast species with the lactic acid bacterium Oenococcus oeni is an interesting field of study. In this work, 60 strain combinations were compared: 3 strains of Saccharomyces cerevisiae (Sc) and 4 strains of Torulaspora delbrueckii (Td) in sequential AF, and four strains of O.
View Article and Find Full Text PDFYeast metabolism depends on growing conditions, which include the chemical composition of the medium, temperature and growth time. Historically, fatty acid profiles have been used to differentiate yeasts growing in liquid media. The present study determined the fatty acids of Saccharomyces species in colonies.
View Article and Find Full Text PDFOenococcus oeni is the main agent responsible for malolactic fermentation (MLF) in wine. This usually takes place in red wines after alcoholic fermentation (AF) carried out by Saccharomyces cerevisiae. In recent years, there is an increasing interest in using non-Saccharomyces yeast, usually in combination with S.
View Article and Find Full Text PDFis the main agent of malolactic fermentation in wine. This fermentation takes place after alcoholic fermentation, in a low nutrient medium where ethanol and other inhibitor compounds are present. In addition, some yeast-derived compounds such as mannoproteins can be stimulatory for .
View Article and Find Full Text PDFThis review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the world from cereals or fruit juices. The alcoholic fermentation converting sugars into ethanol is usually carried out by yeasts, mainly Saccharomyces cerevisiae, which can grow directly using fruit sugars, such as those in grapes for wine or apples for cider, or on previously hydrolyzed starch of cereals, such as for beers. Some of these beverages, or the worts obtained from cereals, can be distilled to obtain spirits.
View Article and Find Full Text PDFThe use of non-Saccharomyces yeast together with S. cerevisiae in winemaking is a current trend. Apart from the organoleptic modulation of the wine, the composition of the resulting yeast lees is different and may thus impact malolactic fermentation (MLF).
View Article and Find Full Text PDFInterest in using non-Saccharomyces yeasts in winemaking has increased in recent years due to their ability to improve wine quality. However, little information has been published regarding the possible effect on malolactic fermentation (MLF), carried out mostly by Oenococcus oeni. The aim of this paper is therefore to evaluate the effect of the most representative non-Saccharomyces species on O.
View Article and Find Full Text PDFNon-Saccharomyces yeasts have increasingly been used in vinification recently. This is particularly true of Torulaspora delbrueckii and Metschnikowia pulcherrima, which are inoculated before S. cerevisiae, to complete a sequential alcoholic fermentation.
View Article and Find Full Text PDFThe modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA.
View Article and Find Full Text PDFThis work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB), especially , the main species carrying out the malolactic fermentation (MLF). The emphasis has been placed on non- effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed.
View Article and Find Full Text PDFThe lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified.
View Article and Find Full Text PDFOenococcus oeni is the main species responsible for the malolactic fermentation (MLF) of wine due to its ability to survive in this environment. Some wine-related stress factors, such as ethanol and low pH, may alter the cell redox balance of O. oeni.
View Article and Find Full Text PDFInt J Food Microbiol
February 2017
Although Oenococcus oeni is the main species that is responsible for malolactic fermentation (MLF), harsh wine conditions can limit its performance. Although several mechanisms underlying the response to stress have been studied in this species, little is known regarding the cellular systems that protect against oxidative stress in other bacteria, such as glutathione (GSH). O.
View Article and Find Full Text PDF, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response.
View Article and Find Full Text PDFThe thioredoxin system protects against oxidative stress through the reversible oxidation of the thioredoxin active center dithiol to a disulphide. The genome of Oenococcus oeni PSU-1 contains three thioredoxin genes (trxA1, trxA2, trxA3), one thioredoxin reductase (trxB) and one ferredoxin reductase (fdr) which, until recently, was annotated as a second thioredoxin reductase. For the first time, the entire thioredoxin system in several O.
View Article and Find Full Text PDFTrace amounts of the carcinogenic ethyl carbamate can appear in wine as a result of a reaction between ethanol and citrulline, which is produced from arginine degradation by some bacteria used in winemaking. In this study, arginine deiminase (ADI) pathway genes were evaluated in 44 Oenococcus oeni strains from wines originating from several locations in order to establish the relationship between the ability of a strain to degrade arginine and the presence of related genes. To detect the presence of arc genes of the ADI pathway in O.
View Article and Find Full Text PDFEpiphytic bacteria on grape berries play a critical role in grape health and quality, which decisively influence the winemaking process. Despite their importance, the bacteria related with grape berry surface remain understudied and most previous work has been based on culture-dependent methods, which offer a limited view of the actual diversity. Herein, we used high-throughput sequencing to investigate the bacterial diversity on the surface from two grape varieties, Grenache and Carignan, and compared them across five vineyards included within the Priorat region (Spain).
View Article and Find Full Text PDFThe correct development of malolactic fermentation depends on the capacity of Oenococcus oeni to survive under harsh wine conditions. The presence of ethanol is one of the most stressful factors affecting O. oeni performance.
View Article and Find Full Text PDFIn the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylene glycol) monoamine (Jeffamine M-600) via aminolysis and ii) Jeffamine M-600 layer complexation with iodine.
View Article and Find Full Text PDF