Graphene oxide, nanographene oxide and partially reduced graphene oxide have been studied as possible foam stabilizing agents for CO₂ based enhanced oil recovery. Graphene oxide was able to stabilize CO₂/synthetic sea water foams, while nanographene oxide and partially reduced graphene oxide were not able to stabilize foams. The inability of nanographene oxide for stabilizing foams was explained by the increase of hydrophilicity due to size decrease, while for partially reduced graphene oxide, the high degree of reduction of the material was considered to be the reason.
View Article and Find Full Text PDFImmobilization of enzymes usually improves the recyclability and stability and can sometimes also improve the activity compared to enzymes free in solution. Mesoporous silica is a widely studied material as host for immobilized enzymes because of its large internal surface area and tunable pores. It has previously been shown that the pore size is critical both for the loading capacity and for the enzymatic activity; however, less focus has been given to the influence of the particle size.
View Article and Find Full Text PDF