Publications by authors named "Albert Ansmann"

Dust pollution largely impacts our environment, health and well-being. However, there is no agreement on how dust-contaminated days are identified to study exposures, as methods differ across disciplines. Different quantitative thresholds, which rely on ground measurements, are generally used to define these events.

View Article and Find Full Text PDF

Atmospheric water is considered an alternative sustainable solution for global water scarcity. We analyzed the effects of meteorological and air-quality parameters on the chemical characteristics of atmospheric water. First, we measured the chemical characteristics of water produced by a unique atmospheric water generator (AWG) apparatus in Tel Aviv, Israel.

View Article and Find Full Text PDF

We present for the first time vertical profiles of microphysical properties of pure mineral dust (largely unaffected by any other aerosol types) on the basis of the inversion of optical data collected with multiwavelength polarization Raman lidar. The data were taken during the Saharan Mineral Dust Experiment (SAMUM) in Morocco in 2006. We also investigated two cases of mixed dust-smoke plumes on the basis of data collected during the second SAMUM field campaign that took place in the Republic of Cape Verde in 2008.

View Article and Find Full Text PDF

The European Space Agency will launch the Atmospheric Laser Doppler Instrument (ALADIN) for global wind profile observations in the near future. The potential of ALADIN to measure the optical properties of aerosol and cirrus, as well, is investigated based on simulations. A comprehensive data analysis scheme is developed that includes (a) the correction of Doppler-shifted particle backscatter interference in the molecular backscatter channels (cross-talk effect), (b) a procedure that allows us to check the quality of the cross-talk correction, and (c) the procedures for the independent retrieval of profiles of the volume extinction and backscatter coefficients of particles considering the height-dependent ALADIN signal resolution.

View Article and Find Full Text PDF

Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to 800 Mm(-1) and lidar ratios mostly between 40 and 55 sr (average of 47+/-6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign.

View Article and Find Full Text PDF

Upcoming multiyear satellite lidar aerosol observations need strong support by a worldwide ground-truth lidar network. In this context the question arises as to whether the ground stations can deliver the same results as obtained from space when the Klett formalism is applied to elastic backscatter lidar data for the same aerosol case. This question is investigated based on simulations of observed cases of simple and complex aerosol layering.

View Article and Find Full Text PDF

The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.

View Article and Find Full Text PDF

We propose to use a Fabry-Perot interferometer (FPI) in a pure rotational Raman lidar to isolate return signals that are due to pure rotational Raman scattering from atmospheric nitrogen against the sky background. The main idea of this instrumental approach is that a FPI is applied as a frequency comb filter with the transmission peaks accurately matched to a comb of practically equidistant lines of a pure rotational Raman spectrum (PRRS) of nitrogen molecules. Thus a matched FPI transmission comb cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines of nitrogen molecules while it is transparent to light within narrow spectral intervals about these lines.

View Article and Find Full Text PDF

An intercomparison of the algorithms used to retrieve aerosol extinction and backscatter starting from Raman lidar signals has been performed by 11 groups of lidar scientists involved in the European Aerosol Research Lidar Network (EARLINET). This intercomparison is part of an extended quality assurance program performed on aerosol lidars in the EARLINET. Lidar instruments and aerosol backscatter algorithms were tested separately.

View Article and Find Full Text PDF

An intercomparison of aerosol backscatter lidar algorithms was performed in 2001 within the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET). The objective of this research was to test the correctness of the algorithms and the influence of the lidar ratio used by the various lidar teams involved in the EARLINET for calculation of backscatter-coefficient profiles from the lidar signals. The exercise consisted of processing synthetic lidar signals of various degrees of difficulty.

View Article and Find Full Text PDF

We describe a Raman-lidar-based approach to acquiring profiles of the relative humidity of air. For this purpose we combined in one instrument the Raman-lidar techniques that are used for the profiling of water vapor and temperature. This approach enabled us to acquire, for the first time to our knowledge, vertical profiles of relative humidity through the entire troposphere exclusively from Raman-lidar data.

View Article and Find Full Text PDF

The range-dependent overlap between the laser beam and the receiver field of view of a lidar can be determined experimentally if a pure molecular backscatter signal is measured in addition to the usually observed elastic backscatter signal, which consists of a molecular component and a particle component. Two methods, the direct determination of the overlap profile and an iterative approach, are presented and applied to a lidar measurement. The measured overlap profile accounts for actual system alignment and for all system parameters that are not explicitly known, such as actual laser beam divergence and spatial intensity distribution of the laser light.

View Article and Find Full Text PDF