Publications by authors named "Albert A Montillo"

Despite the prevalence of Parkinson's disease (PD), there are no clinically-accepted neuroimaging biomarkers to predict the trajectory of motor or cognitive decline or differentiate Parkinson's disease from atypical progressive parkinsonian diseases. Since abnormal connectivity in the motor circuit and basal ganglia have been previously shown as early markers of neurodegeneration, we hypothesize that patterns of interregional connectivity could be useful to form patient-specific predictive models of disease state and of PD progression. We use fMRI data from subjects with Multiple System Atrophy (MSA), Progressive Supranuclear Palsy (PSP), idiopathic PD, and healthy controls to construct predictive models for motor and cognitive decline and differentiate between the four subgroups.

View Article and Find Full Text PDF

New measures of human brain connectivity are needed to address gaps in the existing measures and facilitate the study of brain function, cognitive capacity, and identify early markers of human disease. Traditional approaches to measure functional connectivity (FC) between pairs of brain regions in functional MRI, such as correlation and partial correlation, fail to capture nonlinear aspects in the regional associations. We propose a new machine learning based measure of FC () which efficiently captures linear and nonlinear aspects.

View Article and Find Full Text PDF

Data augmentation improves the accuracy of deep learning models when training data are scarce by synthesizing additional samples. This work addresses the lack of validated augmentation methods specific for synthesizing anatomically realistic four-dimensional (4D) (three-dimensional [3D] + time) images for neuroimaging, such as functional magnetic resonance imaging (fMRI), by proposing a new augmentation method. The proposed method, Brain Library Enrichment through Nonlinear Deformation Synthesis (BLENDS), generates new nonlinear warp fields by combining intersubject coregistration maps, computed using symmetric normalization, through spatial blending.

View Article and Find Full Text PDF

Purpose: To establish optical coherence tomography (OCT)/angiography (OCTA) parameter ranges for healthy eyes (HE) and glaucomatous eyes (GE) for a North Texas based population; to develop a machine learning (ML) tool and to identify the most accurate diagnostic parameters for clinical glaucoma diagnosis.

Patients And Methods: In this retrospective cross-sectional study, we included 1371 eligible eyes, 462 HE and 909 GE (377 ocular hypertension, 160 mild, 156 moderate, 216 severe), from 735 subjects. Demographic data and full OCTA parameters were collected.

View Article and Find Full Text PDF

Gene expression covaries with brain activity as measured by resting state functional magnetic resonance imaging (MRI). However, it is unclear how genomic differences driven by disease state can affect this relationship. Here, we integrate from the ABIDE I and II imaging cohorts with datasets of gene expression in brains of neurotypical individuals and individuals with autism spectrum disorder (ASD) with regionally matched brain activity measurements from fMRI datasets.

View Article and Find Full Text PDF

In resting-state functional magnetic resonance imaging (rs-fMRI), artefactual signals arising from subject motion can dwarf and obfuscate the neuronal activity signal. Typical motion correction approaches involve the generation of nuisance regressors, which are timeseries of non-brain signals regressed out of the fMRI timeseries to yield putatively artifact-free data. Recent work suggests that concatenating all regressors into a single regression model is more effective than the sequential application of individual regressors, which may reintroduce previously removed artifacts.

View Article and Find Full Text PDF

Background: Metabolites are biological compounds reflecting the functional activity of organs and tissues. Understanding metabolic changes in Alzheimer's disease (AD) can provide insight into potential risk factors in this multifactorial disease and suggest new intervention strategies or improve non-invasive diagnosis.

Objective: In this study, we searched for changes in AD metabolism in plasma and frontal brain cortex tissue samples and evaluated the performance of plasma measurements as biomarkers.

View Article and Find Full Text PDF

Background: The lack of biomarkers to inform antidepressant selection is a key challenge in personalized depression treatment. This work identifies candidate biomarkers by building deep learning predictors of individual treatment outcomes using reward processing measures from functional magnetic resonance imaging, clinical assessments, and demographics.

Methods: Participants in the EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study (n = 222) underwent reward processing task-based functional magnetic resonance imaging at baseline and were randomized to 8 weeks of sertraline (n = 106) or placebo (n = 116).

View Article and Find Full Text PDF
Article Synopsis
  • Magnetoencephalography (MEG) records magnetic fields from brain activity but can be affected by non-neuronal artifacts like eye-blinks and heartbeats.
  • A new approach is introduced that eliminates the need for additional electrodes (EOG and ECG) by using advanced machine learning techniques, specifically a deep learning model combining CNNs, to automatically detect and remove these artifacts with high accuracy.
  • The model has been validated on data from 217 subjects, achieving an impressive artifact detection accuracy of 98.95%, which enhances MEG's clinical and research applications while maintaining patient comfort.
View Article and Find Full Text PDF

Introduction: Predictive biomarkers of Parkinson's Disease progression are needed to expedite neuroprotective treatment development and facilitate prognoses for patients. This work uses measures derived from resting-state functional magnetic resonance imaging, including regional homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF), to predict an individual's current and future severity over up to 4 years and to elucidate the most prognostic brain regions.

Methods: ReHo and fALFF are measured for 82 Parkinson's Disease subjects and used to train machine learning predictors of baseline clinical and future severity at 1 year, 2 years, and 4 years follow-up as measured by the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS).

View Article and Find Full Text PDF