Publications by authors named "Albano Figueiredo"

Introduction: The high frequency of polyploidy in the evolutionary history of many plant groups occurring in the Mediterranean region is likely a consequence of its dynamic paleogeographic and climatic history. Polyploids frequently have distinct characteristics that allow them to overcome the minority cytotype exclusion. Such traits may enable polyploid individuals to grow in habitats different from their parentals and/or expand to new areas, leading to spatial segregation.

View Article and Find Full Text PDF

Non-native nitrogen-fixing Acacia species have been invading riparian ecosystems worldwide, potentially threatening stream communities that strongly depend on allochthonous litter. We examined the effects of the invasion of native deciduous temperate forests by Acacia species on litter decomposition and associated fungal decomposers in streams. Litter of native (Alnus glutinosa and Quercus robur) and invasive (Acacia melanoxylon) species were enclosed in fine-mesh bags and immersed in three native and three invaded streams, for 14-98 days.

View Article and Find Full Text PDF

Biological invasions are a major threat to biodiversity and ecosystem functioning. Forest invasion by alien woody species can have cross-ecosystem effects. This is especially relevant in the case of stream-riparian forest meta-ecosystems as forest streams depend strongly on riparian vegetation for carbon, nutrients and energy.

View Article and Find Full Text PDF

Polyploidization is a widespread mechanism of evolutionary divergence in flowering plants. Ecological divergence of polyploid lineages has been proposed as a key process shaping the distribution of cytotypes in nature (niche shift hypothesis); however, evidence for the role of niche separation in replicated diploid-polyploid species pairs is still needed. This study aimed to assess the role of abiotic factors shaping current cytotype distributions.

View Article and Find Full Text PDF

The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid-octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence.

View Article and Find Full Text PDF