Publications by authors named "Albanesi D"

Article Synopsis
  • Two-component systems (TCSs) are essential for bacteria to respond to environmental changes, and in Bacillus subtilis, the DesK/DesR TCS is key for maintaining membrane lipid balance.
  • This study reveals that the YvfT/YvfU TCS, previously uncharacterized, regulates the yvfRS operon, which encodes an ABC transporter, and interestingly, its expression is temperature-dependent.
  • The research shows that the DesK/DesR system influences the expression of yvfRS as both TCSs interact to help the bacteria adapt to their environment, highlighting the complexity of bacterial signaling mechanisms.*
View Article and Find Full Text PDF
Article Synopsis
  • This text refers to a correction made to an article originally published with the DOI: 10.3389/fmolb.2020.592747.
  • The correction likely addresses errors or omissions in the initial publication to ensure accuracy.
  • This type of update is common in academic publishing to maintain the integrity of scientific literature.
View Article and Find Full Text PDF

Acinetobacter sp. Ver3 is a polyextremophilic strain characterized by a high tolerance to radiation and pro-oxidants. The Ver3 genome comprises the sodB and sodC genes encoding an iron (SodB) and a copper/zinc superoxide dismutase (SodC), respectively; however, the specific role(s) of these genes has remained elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Temperature sensing is essential for all organisms, including bacteria, which use it to trigger virulence gene expression in response to host conditions.
  • Researchers identified two membrane thermosensor histidine kinases (HKs) from Gram-positive bacteria that regulate gene expression related to ATP binding cassette (ABC) transporters and respond to environmental temperature changes.
  • The study also reveals that these HKs exhibit specific mechanisms to avoid interference with each other's functions in sensing temperature, highlighting the complexity of bacterial adaptation to environmental stimuli, which may impact their interactions with hosts.
View Article and Find Full Text PDF

A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis.

View Article and Find Full Text PDF

PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in but how it associates with the membrane remains largely unknown.

View Article and Find Full Text PDF

Environmental awareness is an essential attribute of all organisms. The homeoviscous adaptation system of provides a powerful experimental model for the investigation of stimulus detection and signaling mechanisms at the molecular level. These bacteria sense the order of membrane lipids with the transmembrane (TM) protein DesK, which has an N-terminal sensor domain and an intracellular catalytic effector domain.

View Article and Find Full Text PDF

Histidine kinases (HK) are the sensory proteins of two-component systems, responsible for a large fraction of bacterial responses to stimuli and environmental changes. Prototypical HKs are membrane-bound proteins that phosphorylate cognate response regulator proteins in the cytoplasm upon signal detection in the membrane or periplasm. HKs stand as potential drug targets but also constitute fascinating systems for studying proteins at work, specifically regarding the chemistry and mechanics of signal detection, transduction through the membrane, and regulation of catalytic outputs.

View Article and Find Full Text PDF

The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram-negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram-positive Bacillus subtilis to fatty acid starvation.

View Article and Find Full Text PDF

Phospholipids and fatty acids are not only one of the major components of cell membranes but also important metabolic intermediates in bacteria. Since the fatty acid biosynthetic pathway is essential and energetically expensive, organisms have developed a diversity of homeostatic mechanisms to fine-tune the concentration of lipids at particular levels. FapR is the first global regulator of lipid synthesis discovered in bacteria and is largely conserved in Gram-positive organisms including important human pathogens, such as , and .

View Article and Find Full Text PDF

The lipid bilayer component of biological membranes is important for the distribution, organization, and function of bilayer spanning proteins. These physical barriers are subjected to bilayer perturbations. As a consequence, nature has evolved proteins that are able to sense changes in the bilayer properties and transform these lipid-mediated stimuli into intracellular signals.

View Article and Find Full Text PDF

The thermosensor histidine kinase DesK from Bacillus subtilis senses changes in membrane fluidity initiating an adaptive response. Structural changes in DesK have been implicated in transmembrane signaling, but direct evidence is still lacking. On the basis of structure-guided mutagenesis, we now propose a mechanism of DesK-mediated signal sensing and transduction.

View Article and Find Full Text PDF

Unlabelled: Response regulators are proteins that undergo transient phosphorylation, connecting specific signals to adaptive responses. Remarkably, the molecular mechanism of response regulator activation remains elusive, largely because of the scarcity of structural data on multidomain response regulators and histidine kinase/response regulator complexes. We now address this question by using a combination of crystallographic data and functional analyses in vitro and in vivo, studying DesR and its cognate sensor kinase DesK, a two-component system that controls membrane fluidity in Bacillus subtilis.

View Article and Find Full Text PDF

The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens.

View Article and Find Full Text PDF

This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of Bacillus subtilis, composed of a Δ5-desaturase (encoded by the des gene) and the canonical two-component system DesK-DesR, to study the transcriptional regulation of des during cold shock. Students analyze the expression of a reporter transcriptional fusion between the des promoter and the bacterial lacZ gene in a wild-type B.

View Article and Find Full Text PDF

The FapR protein of Bacillus subtilis has been shown to play an important role in membrane lipid homeostasis. FapR acts as a repressor of many genes involved in fatty acid and phospholipid metabolism (the fap regulon). FapR binding to DNA is antagonized by malonyl-CoA, and thus FapR acts as a sensor of the status of fatty acid biosynthesis.

View Article and Find Full Text PDF

Temperature sensing is essential for the survival of living cells. A major challenge is to understand how a biological thermometer processes thermal information to optimize cellular functions. Using structural and biochemical approaches, we show that the thermosensitive histidine kinase, DesK, from Bacillus subtilis is cold-activated through specific interhelical rearrangements in its central four-helix bundle domain.

View Article and Find Full Text PDF

The Bacillus subtilis DesK histidine kinase (HK) is an integral membrane thermosensor that forms part of a regulatory circuit which controls the physical state of membrane lipids. In the pursuit of biochemical and structural approaches to study lipid fluidity-dependent DesK thermosensing, we found that standard expression methods failed to produce enough amounts of a fully functional protein. Here, we describe a high-yield purification method based in an Escherichia coliin vitro transcription-translation system.

View Article and Find Full Text PDF

The synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon.

View Article and Find Full Text PDF

Both prokaryotes and eukaryotes respond to a decrease in temperature with the expression of a specific subset of proteins. We are investigating how Bacillus subtilis cells sense and transduce low-temperature signals to adjust its gene expression. One important step has been accomplished in the dissection of a novel pathway for the adjustment of unsaturated fatty acid synthesis in B.

View Article and Find Full Text PDF

The Bacillus subtilis DesK/DesR two-component system regulates the expression of the des gene coding for the Delta5 acyl lipid desaturase. It is believed that a decrease in membrane lipid fluidity activates the DesK/DesR signal transduction cascade, which results in synthesis of the Delta5 acyl lipid desaturase and desaturation of membrane phospholipids. These newly synthesized unsaturated fatty acids then act as negative signals of des transcription, thus generating a regulatory metabolic loop that optimizes membrane fluidity.

View Article and Find Full Text PDF

The Des pathway of Bacillus subtilis regulates the expression of the acyl-lipid desaturase, Des, thereby controlling the synthesis of unsaturated fatty acids from saturated phospholipid precursors. Activation of this pathway takes place when cells are shifted to low growth temperature or when they are grown in minimal media in the absence of isoleucine supplies. The master switch for the Des pathway is a two-component regulatory system composed of a membrane-associated kinase, DesK, and a soluble transcriptional regulator, DesR, which stringently controls transcription of the des gene.

View Article and Find Full Text PDF

The Des pathway of Bacillus subtilis regulates the expression of the acyl-lipid desaturase, Des, thereby controlling the synthesis of unsaturated fatty acids (UFAs) from saturated phospholipid precursors. Previously, we showed that the master switch for the Des pathway is a two-component regulatory system composed of a membrane-associated kinase, DesK, and a soluble transcriptional regulator, DesR, which stringently controls transcription of the des gene. Activation of this pathway takes place when cells are shifted to low growth temperature.

View Article and Find Full Text PDF

The molecular mechanisms of regulation of the genes involved in the biosynthesis of cysteine are poorly characterized in Bacillus subtilis and other gram-positive bacteria. In this study we describe the expression pattern of the B. subtilis cysH operon in response to sulfur starvation.

View Article and Find Full Text PDF