We report a compact high-resolution arrayed waveguide grating (AWG) interrogator system designed to measure the relative wavelength spacing between two individual resonances of a tilted fiber Bragg grating (TFBG) refractometer. The TFBG refractometer benefits from an internal wavelength and power reference provided by the core mode reflection resonance that can be used to determine cladding mode perturbations with high accuracy. The AWG interrogator is a planar waveguide device fabricated on a silicon-on-insulator platform, having 50 channels with a 0.
View Article and Find Full Text PDFSeveral strong narrowband resonances are observed in the transmission spectra of fiber Bragg gratings photo-written in photonic crystal fiber that has a refractive index-neutral germanium/fluorine co-doped core. Experimental results for the strain, temperature and refractive index sensitivities of these mode resonances are reported and compared to those of conventional single mode fiber. In particular, we identify three kinds of resonances whose relative sensitivities to strain, temperature and refractive index are markedly different and present numerical simulations to explain these properties.
View Article and Find Full Text PDFShort-period fiber Bragg gratings with weakly tilted grating planes generate multiple strong resonances in transmission. Our experimental results show that the wavelength separation between selected resonances allows the measurement of the refractive index of the medium surrounding the fiber for values between 1.25 and 1.
View Article and Find Full Text PDFPolarization dependence of UV-written Bragg gratings in buried ion-exchanged glass waveguides is investigated. A polarization-dependent shift in Bragg wavelength of less than 0.02 nm is measured, both for the even and the odd modes of a laterally dual-mode waveguide.
View Article and Find Full Text PDF