Publications by authors named "Albaladejo J"

In this work, the rate coefficients for OH radical, k(T), and Cl atom, k(T), reaction with allyl 1,1,2,2-tetrafluoroethyl ether, CH=CHCHOCFCHF, were studied as a function of temperature and pressure in a collaborative effort made between UCLM, Spain, and LAPKIN, Greece. OH rate coefficients were determined in UCLM, between 263 and 353 K and 50-600 Torr, using the absolute rate method of pulsed laser photolysis-laser-induced fluorescence technique, while Cl kinetics were studied in temperature (260-363 K) and pressure (34-721 Torr) ranges, using the relative rate method of the thermostated photochemical reactor equipped with Fourier transform infrared spectroscopy as the detection technique. In both OH and Cl reactions, a negative temperature dependence of the measured rate coefficients was observed, which is consistent with complex association reactions.

View Article and Find Full Text PDF

The kinetic study of the gas-phase reactions of hydroxyl (OH) radicals and chlorine (Cl) atoms with CFCHFCFOCH (HFE-356mec3) and CHFCHFOCF (HFE-236ea1) was performed by the pulsed laser photolysis/laser-induced fluorescence technique and a relative method by using Fourier Transform infrared (FTIR) spectroscopy as detection technique. The temperature dependences of the OH-rate coefficients (k(T) in cms) between 263 and 353 K are well described by the following expressions: 9.93 × 10exp{-(988 ± 35)/T}for HFE-356mec3 and 4.

View Article and Find Full Text PDF

In the present work, we study different physicochemical properties related to LADME processes of volasertib, a Polo-like kinase 1 inhibitor in advanced clinical trials. Firstly, the protonation equilibria, the extent of ionization at the physiological pH and pK values of this drug are studied combining spectroscopic techniques and computational calculations. Secondly, the binding process of volasertib to the human serum albumin (HSA) protein is analyzed by fluorescence spectroscopy.

View Article and Find Full Text PDF

Previous vaccination trials have demonstrated that thiol proteins affinity purified from Ostertagia ostertagi excretory-secretory products (O. ostertagi ES-thiol) are protective against homologous challenge. Here we have shown that protection induced by this vaccine was consistent across four independent vaccine-challenge experiments.

View Article and Find Full Text PDF

The welfare and economic impact of bovine respiratory disease complex (BRDC), and its associated antibiotic usage, are major challenges to cattle rearing and beef cattle finishing industries. Accurate pathogen diagnosis is important to undertake appropriate treatment and long-term management strategies, such as vaccine selection. Conventional diagnostic approaches have several limitations including high costs, long turnaround times and difficulty in test interpretation, which could delay treatment decisions and lead to unnecessary animal losses.

View Article and Find Full Text PDF

The NADPH oxidase NOX4 has been proposed as necessary for the apoptosis induced by the Transforming Growth Factor-beta (TGF-β) in hepatocytes and hepatocellular carcinoma (HCC) cells. However, whether NOX4 is required for TGF-β-induced canonical (SMADs) or non-canonical signals is not fully understood yet, neither its potential involvement in other parallel actions induced by TGF-β. In this work we have used CRISPR Cas9 technology to stable attenuate NOX4 expression in HCC cells.

View Article and Find Full Text PDF

The binding processes of two Polo-like kinase inhibitors, RO3280 and GSK461364, to the human serum albumin (HSA) protein as well as the protonation equilibria of both compounds have been studied combining absorbance and fluorescence spectroscopy experiments together with density functional theory calculations. We found that the charge states of RO3280 and GSK461364 are +2 and +1, respectively, at the physiological pH. Nevertheless, RO3280 binds to HSA in the charge state +1 prior to a deprotonation pre-equilibrium.

View Article and Find Full Text PDF

In the present work, the interactions of the novel kinase inhibitors BI-2536, Volasetib (BI-6727) and Ro-3280 with the pharmacological target PLK1 have been studied by fluorescence spectroscopy and molecular dynamics calculations. High Stern-Volmer constants were found in fluorescence experiments suggesting the formation of stable protein-ligand complexes. In addition, it was observed that the binding constant between BI-2536 and PLK1 increases about 100-fold in presence of the phosphopeptide Cdc25C-p that docks to the polo box domain of the protein and releases the kinase domain.

View Article and Find Full Text PDF

Hydrofluoroethers (HFEs), such as CFCHOCH (HFE-263fb2), CHFCFCHOCH (HFE-374pcf), and CFCFCHOCH (HFE-365mcf3), have been proposed in the last few decades as the third-generation replacements for perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs) because of their zero stratospheric ozone depletion potentials and relatively low global warming potentials (GWPs). These GWPs depend on the radiative efficiency (RE) and the atmospheric lifetime () of HFEs due to the reaction with hydroxyl (OH) radicals. The temperature and pressure dependencies of the OH-rate coefficient (()) for HFE-263fb2, HFE-374pcf, and HFE-365mcf3 are not known.

View Article and Find Full Text PDF

Quantitative analysis of sulfate anions in water still remains an important challenge for the society. Among all the methodologies, the most successful one is based on optical supramolecular receptors because the presence of small concentrations of sulfate anion modifies the photophysical properties of the receptor. In this case, fluorescence anion sensors have been designed by the incorporation of guanidine motifs into fluorenyl cores.

View Article and Find Full Text PDF

Pyrodinium bahamense, a harmful alga which causes paralytic shellfish poisoning (PSP), has been found in seawater samples collected along bays in Eastern Visayas in the Philippines. Due to its negative impacts and uncertainty in its occurrence, there is a need to develop a real-time monitoring device of the harmful algal bloom (HAB) occurrence. This study aims to determine whether there is significant relationship between the dependent variable, the P.

View Article and Find Full Text PDF

The role of water vapor (HO) and its hydrogen-bonded complexes in the gas-phase reactivity of organic compounds with hydroxyl (OH) radicals has been the subject of many recent studies. Contradictory effects have been reported at temperatures between 200 and 400 K. For the OH + acetaldehyde reaction, a slight catalytic effect of HO was previously reported at temperatures between 60 and 118 K.

View Article and Find Full Text PDF

The gas-phase reaction between -2-methyl-2-butenal and chlorine (Cl) atoms has been studied in a simulation chamber at 298 ± 2 K and 760 ± 5 Torr of air under free-NO conditions. The rate coefficient of this reaction was determined as = (2.45 ± 0.

View Article and Find Full Text PDF

Gas-phase reactions in the interstellar medium (ISM) are a source of molecules in this environment. The knowledge of the rate coefficient for neutral-neutral reactions as a function of temperature, k(T), is essential to improve astrochemical models. In this work, we have experimentally measured k(T) for the reaction between the OH radical and acetaldehyde, both present in many sources of the ISM.

View Article and Find Full Text PDF

pH is an important biomarker for many human diseases and great efforts are being made to develop new pH probes for bioimaging and biomedical applications. Here, the use of three different CdSe/ZnS QDs, functionalized with d-penicillamine and small peptides, as pH probes for fluorescence lifetime imaging microscopy (FLIM) is investigated. The fluorescence pH sensitivity of the nanoparticles is analyzed in different experimental media: aqueous solution, synthetic intracellular medium, and mesenchymal C3H10T1/2 and tumoral SK-MEL-2 cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a luminescent compound made from anthracene and guanidine that forms unusual T-shaped dimers, leading to a highly efficient excimer with nearly perfect quantum yield.
  • - Water is crucial in this process, as its hydrogen bonding facilitates the self-assembly of these dimers.
  • - These findings open up new possibilities for creating eco-friendly light-emitting materials that depend on aggregation-induced emission.
View Article and Find Full Text PDF

The rate coefficient, (), for the gas-phase reaction between OH radicals and acetone CHC(O)CH, has been measured using the pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique ( = 11.7-64.4 K).

View Article and Find Full Text PDF

The reactivity of methanol (CH3OH) toward the hydroxyl (OH) radical was investigated in the temperature range 11.7-177.5 K using the CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed biodegradable devices using polycaprolactones for delivering doxorubicin in glioblastoma treatment, focusing on controlled molar mass and dispersity.
  • The devices were created using emulsion formation and a combination of precipitation and hydrolysis, and were analyzed through various techniques to measure their characteristics and effectiveness as drug carriers.
  • Findings showed that doxorubicin-loaded nanoscale carriers had a higher cytotoxic effect on glioblastoma cells compared to microscale carriers and offered improved safety profiles, suggesting this method could effectively deliver doxorubicin for glioblastoma therapy.
View Article and Find Full Text PDF

Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients () of the gas-phase OH+HCO reaction between 22 and 107 K.

View Article and Find Full Text PDF

The relative-rate technique has been used to determine the rate coefficient for the reaction of CFCHCH (x = 1, 2, 3, 4 and 6) with ozone at (298 ± 2) K and (720 ± 5) Torr of air by FTIR (Fourier Transform Infrared Spectroscopy) and by GC-MS/SPME (Gas Chromatography-Mass Spectroscopy with Solid Phase Micro Extraction) in two different atmospheric simulation chambers. The following rate coefficients, in units of 10 cm molecule s, were obtained: (3.01 ± 0.

View Article and Find Full Text PDF

The article "Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature" proposes a dimer mediated mechanism in order to explain the large low temperature rate coefficients for the OH + methanol reaction measured by several groups. It is demonstrated here theoretically that under the conditions of these low temperature experiments, there are insufficient dimers formed for the proposed new mechanism to apply. Experimental evidence is also presented to show that dimerization of the methanol reagent does not influence the rate coefficients reported under the conditions of methanol concentration used for the kinetics studies.

View Article and Find Full Text PDF

Ethanol, CHCHOH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances.

View Article and Find Full Text PDF

We report here the rate coefficients for the OH reactions (k) with E-CFCH═CHF and Z-CFCH═CHF, potential substitutes of HFC-134a, as a function of temperature (263-358 K) and pressure (45-300 Torr) by pulsed laser photolysis coupled to laser-induced fluorescence techniques. For the E-isomer, the existing discrepancy among previous results on the T dependence of k needs to be elucidated. For the Z-isomer, this work constitutes the first absolute determination of k.

View Article and Find Full Text PDF

BI-2536 is a potent Polo-like kinase inhibitor which induces apoptosis in diverse human cancer cell lines. The binding affinity of BI-2536 for human serum albumin (HSA) protein may define its pharmacokinetic and pharmacodynamic profile. We have studied the binding of BI-2536 to HSA by means of different spectroscopic techniques and docking calculations.

View Article and Find Full Text PDF