Recent studies are showing that some lights suitable for illuminating the urban fabric (i.e. that do not include the red, green and blue sets of primary colours) may halt biological colonisation on monuments, mainly that caused by phototrophic subaerial biofilms (SABs), which may exacerbate the biodeterioration of substrates.
View Article and Find Full Text PDFAim: Coaggregation, a highly specific cell-cell interaction mechanism, plays a pivotal role in multispecies biofilm formation. While it has been mostly studied in oral environments, its occurrence in aquatic systems is also acknowledged. Considering biofilm formation's economic and health-related implications in engineered water systems, it is crucial to understand its mechanisms.
View Article and Find Full Text PDFThe presence of organic micropollutants in water and sediments motivates investigation of their biotransformation at environmentally low concentrations, usually in the range of μg L. Many are biotransformed by cometabolic mechanisms; however, there is scarce information concerning their direct metabolization in this concentration range. Threshold concentrations for microbial assimilation have been reported in both pure and mixed cultures from different origins.
View Article and Find Full Text PDF1,2-dichloropropane (1,2-DCP) and 1,2,3-trichloropropane (1,2,3-TCP) are hazardous chemicals frequently detected in groundwater near agricultural zones due to their historical use in chlorinated fumigant formulations. In this study, we show that the organohalide-respiring bacterium Dehalogenimonas alkenigignens strain BRE15 M can grow during the dihaloelimination of 1,2-DCP and 1,2,3-TCP to propene and allyl chloride, respectively. Our work also provides the first application of dual isotope approach to investigate the anaerobic reductive dechlorination of 1,2-DCP and 1,2,3-TCP.
View Article and Find Full Text PDFAnammox bacteria are widely applied worldwide for denitrification of urban wastewater. Differently, their application in the case of industrial effluents has been more limited. Those frequently present high loads of contaminants, demanding an individual evaluation of their treatability by anammox technologies.
View Article and Find Full Text PDFNitrite-driven anaerobic methane oxidation (N-damo) is a promising biological process to achieve carbon-neutral wastewater treatment solutions, aligned with the sustainable development goals. Here, the enzymatic activities in a membrane bioreactor highly enriched in N-damo bacteria operated at high nitrogen removal rates were investigated. Metaproteomic analyses, with a special focus on metalloenzymes, revealed the complete enzymatic route of N-damo including their unique nitric oxide dismutases.
View Article and Find Full Text PDFDichloromethane (DCM, methylene chloride) is a toxic, high-volume industrial pollutant of long-standing. Anaerobic biodegradation is crucial for its removal from contaminated environments, yet prevailing mechanisms remain unresolved, especially concerning dehalogenation. In this study, we obtained an assembled genome of a novel DCM-degrading strain, Dehalobacterium formicoaceticum strain EZ94, from a stable DCM-degrading consortium, and we analyzed its proteome during degradation of DCM.
View Article and Find Full Text PDFUnspecific peroxygenase (UPO) presents a wide range of biotechnological applications. This study targets the use of by-products from bioethanol synthesis to produce UPO by Agrocybe aegerita. Solid-state and submerged fermentations (SSF and SmF) were evaluated, achieving the highest titers of UPO and laccase in SmF using vinasse as nutrients source.
View Article and Find Full Text PDFBrominated organic compounds such as 1,2-dibromoethane (1,2-DBA) are highly toxic groundwater contaminants. Multi-element compound-specific isotope analysis bears the potential to elucidate the biodegradation pathways of 1,2-DBA in the environment, which is crucial information to assess its fate in contaminated sites. This study investigates for the first time dual C-Br isotope fractionation during in vivo biodegradation of 1,2-DBA by two anaerobic enrichment cultures containing organohalide-respiring bacteria (i.
View Article and Find Full Text PDFThe growing concern about antibiotic-resistant microorganisms has focused on the sludge from wastewater treatment plants (WWTPs) as a potential hotspot for their development and spread. To this end, it seems relevant to analyze the changes on the microbiota as a consequence of the antibiotics that wastewater may contain. This study aims at determining whether the presence of sulfamethoxazole (SMX), even in relatively low concentrations, modifies the microbial activities and the enzymatic expression of an activated sludge under aerobic heterotrophic conditions.
View Article and Find Full Text PDFEnzymes offer interesting features as biological catalysts for industry: high specificity, activity under mild conditions, accessibility, and environmental friendliness. Being able to produce enzymes in large quantities and having them available in a stable and reusable form reduces the production costs of any enzyme-based process. Agricultural residues have recently demonstrated their potential as substrates to produce ligninolytic enzymes by different white rot fungi.
View Article and Find Full Text PDFUnlabelled: Biodegradation of dichloromethane (DCM) under reducing conditions is of major concern due to its widespread detection in contaminated groundwaters. Here, we report an anaerobic enrichment culture derived from a membrane bioreactor operating in an industrial wastewater treatment plant, capable of fermenting DCM and the brominated analogue dibromomethane (DBM). Comparative analysis of bacterial 16S rDNA-DGGE profiles from fresh liquid medium inoculated with single colonies picked from serial dilution-to-extinction agar vials showed that cultures degrading DCM contained a predominant band belonging to Dehalobacterium, however this band was absent in cultures unable to degrade DCM.
View Article and Find Full Text PDF