The use of reclaimed water for agricultural activities is being widely employed to address drought and water scarcity. Nevertheless, the disinfection processes do not consistently facilitate the complete removal of all eukaryotic viruses within these reclaimed waters. Consequently, it may pose a risk not only to humans but also to irrigated plants.
View Article and Find Full Text PDFClimate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples.
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69).
View Article and Find Full Text PDFDue to the excretion of SARS-CoV-2 in faeces, the use of wastewater-based epidemiology (WBE) is a useful tool for virus surveillance in large populations. The analysis of this virus includes a concentration step prior to virus detection by RT-qPCR. In addition, the use of massive sequencing allows the detection of specific mutations of clinical importance, as well as the detection of the introduction of new lineages in a specific population.
View Article and Find Full Text PDFThe 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees.
View Article and Find Full Text PDFBackground: The virome (i.e. community of mainly RNA and DNA eukaryotic viruses and bacteriophages) of waters is yet to be extensively explored.
View Article and Find Full Text PDFBesides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n = 312) from 24 different wastewater treatment plants were obtained between May 9 (week 19 of 2022) and August 4 (week 31 of 2022).
View Article and Find Full Text PDFDuring the current COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a reliable strategy both as a surveillance method and a way to provide an overview of the SARS-CoV-2 variants circulating among the population. Our objective was to compare two different concentration methods, a well-established aluminum-based procedure (AP) and the commercially available Maxwell® RSC Enviro Wastewater TNA Kit (TNA) for human enteric virus, viral indicators and SARS-CoV-2 surveillance. Additionally, both concentration methods were analyzed for their impact on viral infectivity, and nucleic acids obtained from each method were also evaluated by massive sequencing for SARS-CoV-2.
View Article and Find Full Text PDFThe species was first described in 2016 with five strains recovered from untreated water and vegetables from Portugal. Since then, no further records exist of this species. During a surveillance study on the presence of in fish farms in Mexico, a new strain (ESV-351) of the mentioned species isolated from a rainbow trout was recovered.
View Article and Find Full Text PDFViruses are the cause of a considerable burden to human, animal and plant health, while on the other hand playing an important role in regulating entire ecosystems. The power of new sequencing technologies combined with new tools for processing "Big Data" offers unprecedented opportunities to answer fundamental questions in virology. Virologists have an urgent need for virus-specific bioinformatics tools.
View Article and Find Full Text PDFWastewater surveillance is a fast and cost-effective tool that enables tracing of both symptomatic and asymptomatic transmission of SARS-CoV-2. In this paper, a pilot program carried out at the University Jaume I for monitoring the trends of the presence of SARS-CoV-2 in wastewater. To the best of our knowledge, this is the first such project conducted on a university campus in Spain.
View Article and Find Full Text PDFThe International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions.
View Article and Find Full Text PDFWastewater discharge to the environment or its reuse after sanitization poses a concern for public health given the risk of transmission of human viral diseases. However, estimating the viral infectivity along the wastewater cycle presents technical challenges and still remains underexplored. Recently, human-associated crAssphage has been investigated to serve as viral pathogen indicator to monitor fecal impacted water bodies, even though its assessment as biomarker for infectious enteric viruses has not been explored yet.
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) has proven to be an effective tool for epidemiological surveillance of SARS-CoV-2 during the current COVID-19 pandemic. Furthermore, combining WBE together with high-throughput sequencing techniques can be useful for the analysis of SARS-CoV-2 viral diversity present in a given sample. The present study focuses on the genomic analysis of SARS-CoV-2 in 76 sewage samples collected during the three epidemiological waves that occurred in Spain from 14 wastewater treatment plants distributed throughout the country.
View Article and Find Full Text PDFIsolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets.
View Article and Find Full Text PDFThe virological quality of process water (PW) used by the produce industry has received limited attention. As a first step to overcoming technical limitations in monitoring viruses in PW, the analytical performance of ultrafiltration was assessed to concentrate viral particles from 20 L of spiked PW. The selected method used for sample concentration of PW was carefully validated, thus enabling the accurate quantification and estimation of viral titers of human enteric viruses and phages.
View Article and Find Full Text PDFThe ongoing coronavirus 2019 (COVID-19) pandemic constitutes a concerning global threat to public health and economy. In the midst of this pandemic scenario, the role of environment-to-human COVID-19 spread is still a matter of debate because mixed results have been reported concerning SARS-CoV-2 stability on high-touch surfaces in real-life scenarios. Up to now, no alternative and accessible procedures for cell culture have been applied to evaluate SARS-CoV-2 infectivity on fomites.
View Article and Find Full Text PDFMetagenomic next-generation sequencing (mNGS) is an untargeted technique for determination of microbial DNA/RNA sequences in a variety of sample types from patients with infectious syndromes. mNGS is still in its early stages of broader translation into clinical applications. To further support the development, implementation, optimization and standardization of mNGS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established.
View Article and Find Full Text PDFThe use of metagenomics for virome characterization and its implementation for wastewater analyses, including wastewater-based epidemiology, has increased in the last years. However, the lack of standardized methods can led to highly different results. The aim of this work was to analyze virome profiles in upstream and downstream wastewater samples collected from four wastewater treatment plants (WWTPs) using two different library preparation kits.
View Article and Find Full Text PDFWastewater based epidemiology (WBE) has emerged as a reliable strategy to assess the coronavirus disease 2019 (COVID-19) pandemic. Recent publications suggest that SARS-CoV-2 detection in wastewater is technically feasible; however, many different protocols are available and most of the methods applied have not been properly validated. To this end, different procedures to concentrate and extract inactivated SARS-CoV-2 and surrogates were initially evaluated.
View Article and Find Full Text PDFMetagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established.
View Article and Find Full Text PDFThe need for monitoring tools to better control the ongoing coronavirus disease (COVID-19) pandemic is extremely urgent and the contamination of water resources by excreted viral particles poses alarming questions to be answered. As a first step to overcome technical limitations in monitoring SARS-CoV-2 along the water cycle, we assessed the analytical performance of a dead end hollow fiber ultrafiltration coupled to different options for secondary concentrations to concentrate viral particles from large volume of spiked tap water, seawater and surface water together with two quantitative RT-qPCR detection kits. Spiking the porcine epidemic diarrhea virus (PEDV), an enveloped virus surrogate for SARS-CoV-2, together with the mengovirus, we demonstrated that PEG-precipitation and SENS-kit better recovered PEDV (13.
View Article and Find Full Text PDF