Introduction: The radiohybrid (rh) prostate-specific membrane antigen (PSMA)-targeted ligand [F]Ga-rhPSMA-7 has previously been clinically assessed and demonstrated promising results for PET-imaging of prostate cancer. The ligand is present as a mixture of four stereoisomers ([F]Ga-rhPSMA-7.1, - 7.
View Article and Find Full Text PDFMutating the side-chains of amino acids in a peptide ligand, with unnatural amino acids, aiming to mitigate its short half-life is an established approach. However, it is hypothesized that mutating specific backbone peptide bonds with bioisosters can be exploited not only to enhance the proteolytic stability of parent peptides, but also to tune its receptor subtype selectivity. Towards this end, four [Y] -Angiotensin II analogues are synthesized where amide bonds have been replaced by 1,4-disubstituted 1,2,3-triazole isosteres in four different backbone locations.
View Article and Find Full Text PDFRadiolabeled derivatives of the peptide neurotensin (NT) and its binding sequence NT(8-13) have been studied as potential imaging probes and therapeutics for NT-1-receptor-positive cancer. However, a direct comparison of reported NT analogues, even if radiolabeled with the same radionuclide, is difficult because different techniques and models have been used for preclinical evaluations. In an effort to identify a suitable derivative of NT(8-13) for radiotracer development, we herein report a side-by-side in vitro comparison of radiometallated NT derivatives bearing some of the most commonly reported amino acid substitutions in their sequence.
View Article and Find Full Text PDFNeurotensin (NT) is a regulatory peptide with nanomolar affinity toward NT receptors, which are overexpressed by different clinically relevant tumors. Its binding sequence, NT(8-13), represents a promising vector for the development of peptidic radiotracers for tumor imaging and therapy. The main drawback of the peptide is its short biological half-life due to rapid proteolysis in vivo.
View Article and Find Full Text PDFNovel backbone-modified radiolabeled analogs based on the tumor targeting peptide bombesin were synthesized and fully evaluated in vitro and in vivo. We have recently introduced the use of 1,4-disubstituted 1,2,3-triazoles as metabolically stable trans-amide bond surrogates in radiolabeled peptides in order to improve their tumor targeting. As an extension of our approach, we now report several backbone-modified analogs of the studied bombesin peptide bearing multiple triazole substitutions.
View Article and Find Full Text PDF