Publications by authors named "Alba Gines"

Oxaliplatin was the first platinum drug with proven activity against colorectal tumors, becoming a standard in the management of this malignancy. It is also considered for the treatment of pancreatic and gastric cancers. However, a major reason for treatment failure still is the existence of tumor intrinsic or acquired resistance.

View Article and Find Full Text PDF

Chemoresistance is the main cause of treatment failure in advanced colorectal cancer (CRC). However, molecular mechanisms underlying this phenomenon remain to be elucidated. In a previous work we identified low levels of PKM2 as a putative oxaliplatin-resistance marker in HT29 CRC cell lines and also in patients.

View Article and Find Full Text PDF

We aimed to gain further understanding of the molecular mechanisms involved in oxaliplatin resistance in colorectal cancer by using a proteomic approach. A 5-fold oxaliplatin-resistant cell line, HTOXAR3, was compared with its parental cell line, HT29, using two-dimensional PAGE. Mass spectrometry, Western blot, and real-time quantitative PCR confirmed the down-regulation of pyruvate kinase M2 (PK-M2) in HTOXAR3 cells.

View Article and Find Full Text PDF

Recently, the copper efflux transporters ATP7B and ATP7A have been implicated in the transport of and resistance to platinum drugs in breast and ovarian cancers. Because of the extensive use of oxaliplatin in colorectal cancer (CRC), we examined the expression of both transporters in tumors from CRC patients treated with oxaliplatin/5FU and sought to determine whether their expression can predict clinical outcome in these patients. ATP7B and ATP7A levels were determined by quantitative real-time PCR in 50 primary tumors of previously untreated patients with advanced colorectal adenocarcinoma who were subsequently treated with oxaliplatin/5FU.

View Article and Find Full Text PDF

Oxaliplatin is a third-generation platinum agent used in colorectal cancer treatment. Oxaliplatin resistance acquisition is a complex process mainly based on alteration of genes and pathways involved in its mechanism of action. Therefore, our purpose was to perform a gene expression screening in an in vitro model to identify genes that could play a role in oxaliplatin resistance acquisition processes.

View Article and Find Full Text PDF

We studied the role of TS (5'VNTR, 5'SNP and 3'UTR), XRCC1-399, XPD-751, ERCC1-118 and XRCC3-241 genetic polymorphisms in tailoring fluroropyrimidine/oxaliplatin treatment. For this purpose, 110 XELOX (capecitabine/oxaliplatin)- or FUOX (fluorouracil/oxaliplatin)-treated metastatic colorectal cancer patients were selected prospectively for genotyping. In the FUOX group, TS-3'UTR +6bp/+6bp (hazards ratio, HR=2.

View Article and Find Full Text PDF