Aims: Dipeptidyl peptidase 4 (DPP4) has been proposed as a coreceptor for SARS-CoV-2 cellular entry. Considering that type 2 diabetes mellitus (T2DM) has been identified as the most important risk factor for SARS-CoV-2, and that gliptins (DPP4 inhibitors) are a prescribed diabetic treatment, this study aims to unravel the impact of DPP4 in the intersection of T2DM/COVID-19.
Materials And Methods: We analyzed 189 serum human samples, divided into six clinical groups (controls, T2DM, T2DM + gliptins, COVID-19, COVID-19 + T2DM, and COVID-19 + T2DM + gliptins), measuring DPP4 protein concentration and activity by Western blot, ELISA, and commercial activity kits.
In this study, we examined the metabolic adaptations of a chemoresistant prostate cancer cell line in comparison to a sensitive cell line. We utilized prostate cancer LNCaP cells and subjected them to a stepwise increase in the antiandrogen 2-hydroxy-flutamide (FLU) concentration to generate a FLU-resistant cell line (LN-FLU). These LN-FLU cells displayed characteristics of cancer stem cells, exhibited drug resistance, and showed a significantly reduced expression of Cyclin D1, along with the overexpression of p16, pointing to a proliferation arrest.
View Article and Find Full Text PDFThroughout the pandemic, serological assays have been revealed as crucial for detecting previous exposures to the virus and determining the timing of antibody maintenance after vaccination or natural infection. This study aimed to develop an optimized enzyme-linked immunosorbent assay (ELISA)-based serology, which could be used in case of reagent shortages, such as that occurred in the beginning of this health emergency. As a result, we present a high-sensitive immunoassay for the determination of IgG levels in venous serum samples, using 2 μg/mL antigen (receptor-binding domain of the spike protein S1) for coating the plate and utilizing human samples at a dilution 1:1000.
View Article and Find Full Text PDF