Publications by authors named "Alba De-San-Eustaquio-Campillo"

B. subtilis adapts to changing environments by reprogramming its genetic expression through a variety of transcriptional regulators from the global transition state regulators that allow a complete resetting of the cell genetic expression, to stress specific regulators controlling only a limited number of key genes required for optimal adaptation. Among them, MarR-type transcriptional regulators are known to respond to a variety of stresses including antibiotics or oxidative stress, and to control catabolic or virulence gene expression.

View Article and Find Full Text PDF

Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins.

View Article and Find Full Text PDF

The twin-arginine translocation system (Tat) is a protein transport system that moves fully folded and cofactor-containing proteins across membranes of bacteria, archaea and thylakoids. The minimal Tat pathway is composed of two subunits, TatA and TatC. In some organisms TatA has been duplicated and evolved to form a third specialized subunit, TatB.

View Article and Find Full Text PDF

Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection.

View Article and Find Full Text PDF