Lysine-specific histone demethylase 1 (LSD1) is a histone demethylase that plays a critical role in epigenetic regulation by removing the methyl group from mono- and di-methylated lysine 4 on histone H3 (H3K4me1/2), acting as a repressor of gene expression. Recently, catalytically independent functions of LSD1, serving as a scaffold for assembling chromatin-regulator and transcription factor complexes, have been identified. Herein, we show for the first time that LSD1 interacts with chromodomain-helicase-DNA-binding protein 7 (CHD7) in mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFAgeing is a conserved and unavoidable biological process characterized by progressive decline of physiological functions with time. Despite constituting the greatest risk factor for most human diseases, little is known about the molecular mechanisms driving the ageing process. More than 170 chemical RNA modifications, also known as the epitranscriptome, decorate eukaryotic coding and non-coding RNAs and have emerged as novel regulators of RNA metabolism, modulating RNA stability, translation, splicing or non-coding RNA processing.
View Article and Find Full Text PDFBMAL1 is essential for the regulation of circadian rhythms in differentiated cells and adult stem cells, but the molecular underpinnings of its function in pluripotent cells, which hold a great potential in regenerative medicine, remain to be addressed. Here, using transient and permanent loss-of-function approaches in mouse embryonic stem cells (ESCs), we reveal that although BMAL1 is dispensable for the maintenance of the pluripotent state, its depletion leads to deregulation of transcriptional programs linked to cell differentiation commitment. We further confirm that depletion of alters the differentiation potential of ESCs in vitro.
View Article and Find Full Text PDF