Chronic opioid intake leads to several brain changes involved in the development of dependence, whereby an early hedonistic effect (liking) extends to the need to self-administer the drug (wanting), the latter being mostly a prefrontal-striatal function. The development of animal models for voluntary oral opioid intake represents an important tool for identifying the cellular and molecular alterations induced by chronic opioid use. Studies mainly in humans have shown that polydrug use and drug dependence are shared across various substances.
View Article and Find Full Text PDFObjectives: In this preliminary and multidisciplinary exploratory study, we assessed whether a mindfulness practice could be enhanced through a multisensory experience design that mimics the "beginner's mind," relying on sensory awareness and biofeedback processes as participants interact with the experience.
Methods: We piloted and designed two conditions, being (a) a guided mindfulness practice based on the senses as an anchor to the present moment, using audio instruction only; and (b) an experience of mindfulness practice with successive sensory stimulation (olfactory, audio, and visual stimulation) followed by an interactive experience with biofeedback that provides a visual representation of the person's heartbeat in real-time. For each of the conditions we assessed anxiety (state and trait), as well as other psychological variables pre- and post-experience.
Background And Aims: HDL particles may act to buffer host cells from excessive inflammatory mediators. The aim of this study is to investigate if the lipid profile provides a prognostic biomarker for COVID-19 outcomes.
Methods: This was a prospective study of the characteristics of 125 adult COVID-19 patients with a lipid profile performed on the day of admission analyzed with regard to clinical outcomes.
Environ Monit Assess
January 2023
Water quality monitoring allows communities to achieve sustainable management of water resources, which is crucial for life-supporting processes. Water quality is determined by measuring chemical, physical, and biological parameters, requiring sophisticated meters and trained specialists to perform the measurement. However, in low-income communities, water quality is determined by using human senses-smell, color, and taste-since meter acquisition is limited by costs and most people do not know how to monitor water quality.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) are commonly synthesized using the citrate reduction method, reducing Au into Au ions and facilitating the disproportionation of aurous species to Au atoms (Au). This method results on citrate-capped AuNPs with valence single states Au. Here, we report a methodology that allows obtaining AuNPs by the dewetting process with three different valence states (Au, Au, and Au), which can be fine-tuned with ion bombardment.
View Article and Find Full Text PDFAn animal model of voluntary oral morphine consumption would allow for a pre-clinical evaluation of new treatments aimed at reducing opioid intake in humans. However, the main limitation of oral morphine consumption in rodents is its bitter taste, which is strongly aversive. Taste aversion is often overcome by the use of adulterants, such as sweeteners, to conceal morphine taste or bitterants in the alternative bottle to equalize aversion.
View Article and Find Full Text PDFMajor depression is a devastating disease affecting an increasing number of people from a young age worldwide, a situation that is expected to be worsened by the COVID-19 pandemic. New approaches for the treatment of this disease are urgently needed since available treatments are not effective for all patients, take a long time to produce an effect, and are not well-tolerated in many cases; moreover, they are not safe for all patients. There is solid evidence showing that the antioxidant capacity is lower and the oxidative damage is higher in the brains of depressed patients as compared with healthy controls.
View Article and Find Full Text PDFThe pervasive use of portable electronic devices, powered from rechargeable batteries, represents a significant portion of the electricity consumption in the world. A sustainable and alternative energy source for these devices would require unconventional power sources, such as harvesting kinetic/potential energy from mechanical vibrations, ultrasound waves, and biomechanical motion, to name a few. Piezoelectric materials transform mechanical deformation into electric fields or, conversely, external electric fields into mechanical motion.
View Article and Find Full Text PDFHeavy metal pollution is posing a severe health risk on living organisms. Therefore, significant research efforts are focused on their detection. Here, we developed a sensing platform sensor for the selective detection of lead(II) acetate.
View Article and Find Full Text PDFThe pandemic caused by the SARS-CoV-2 infection affects many aspects of public health knowledge, science, and practice around the world. Several studies have shown that SARS-CoV-2 RNA in plasma seems to be associated with a worse prognosis of COVID-19. In the present study, we investigated plasma and buffy RNA in patients with COVID-19 to determine its prognostic value.
View Article and Find Full Text PDFNerve Growth Factor (NGF) and its high-affinity receptor tropomyosin receptor kinase A (TRKA) increase their expression during the progression of epithelial ovarian cancer (EOC), promoting cell proliferation and angiogenesis through several oncogenic proteins, such as c-MYC and vascular endothelial growth factor (VEGF). The expression of these proteins is controlled by microRNAs (miRs), such as miR-145, whose dysregulation has been related to cancer. The aims of this work were to evaluate in EOC cells whether NGF/TRKA decreases miR-145 levels, and the effect of miR-145 upregulation.
View Article and Find Full Text PDFBackground: The conventional approaches to assess the potential cytotoxic effects of nanomaterials (NMs) mainly rely on in vitro biochemical assays. These assays are strongly dependent on the properties of the nanomaterials, for example; specific surface area (SSA), size, surface defects, and surface charge, and the host response. The NMs properties can also interfere with the reagents of the biochemical and optical assays leading to skewed interpretations and ambiguous results related to the NMs toxicity.
View Article and Find Full Text PDFGrowing antimicrobial resistance is considered a potential threat for human health security by health organizations, such as the WHO, CDC and FDA, pointing to MRSA as an example. New antibacterial drugs and complex derivatives are needed to combat the development of bacterial resistance. Six new copper and cobalt complexes of azole derivatives were synthesized and isolated as air-stable solids and characterized by melting point analyses, elemental analyses, thermogravimetric analyses (TGA), and infrared and ultraviolet/visible spectroscopy.
View Article and Find Full Text PDFBacterial cellulose (BC) has been used as a scaffold for tissue regeneration (TR). Improving functional TR requires highly selective strategies for specific cell attraction. Embedding iron oxide nanoparticles into a BC matrix can drive magnetically labeled cells to specific tissues where they may begin to heal injured tissue.
View Article and Find Full Text PDFWe study the depth sensitivity and spatial resolution of subsurface imaging of polymer nanocomposites using second harmonic mapping in Kelvin Probe Force Microscopy (KPFM). This method allows the visualization of the clustering and percolation of buried Single Walled Carbon Nanotubes (SWCNTs) via capacitance gradient (∂C/∂z) maps. We develop a multilayered sample where thin layers of neat Polyimide (PI) (∼80 nm per layer) are sequentially spin-coated on well-dispersed SWCNT/Polyimide (PI) nanocomposite films.
View Article and Find Full Text PDFHigh-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix.
View Article and Find Full Text PDF