Diatoms are the largest group of heterokont algae with more than 100,000 species. As one of the single-celled photosynthetic organisms that inhabit marine, aquatic and terrestrial ecosystems, diatoms contribute ~ 45% of global primary production. Despite their ubiquity and environmental significance, very few diatom plastid genomes (plastomes) have been sequenced and studied.
View Article and Find Full Text PDFA comprehensive analysis of methyltransferase (MTase) from Zika virus (ZIKV) is of interest in the development of drugs and biomarkers in the combat and care of ZIKA fever with impulsive joint pain and conjunctivitis. MTase sequence is homologous in several viral species. We analyzed the MTase domain from ZIKV using Bioinformatics tools such as SMART, PROSITE, PFAM, PANTHER, and InterProScan to glean insights on the sequence to structure to function data.
View Article and Find Full Text PDFObesity is a multifactorial disease caused by complex interactions between genes and dietary factors. Salt-rich diet is related to the development and progression of several chronic diseases including obesity. However, the molecular basis of how salt sensitivity genes (SSG) contribute to adiposity in obesity patients remains unexplored.
View Article and Find Full Text PDFObesity is a multifactorial metabolic disorder characterized by low grade chronic inflammation. Rare and novel mutations in genes which are vital in several key pathways have been reported to alter the energy expenditure which regulates body weight. The or gene plays a prominent role in regulating various metabolic activities such as glycolysis, lipolysis, and glycogen synthesis.
View Article and Find Full Text PDFDengue, West Nile and Zika virus belongs to the family flaviviridae and genus flavivirus. It is of interest to design and develop inhibitors with improved activity against these diseases. We used the helicases target to screen for potential inhibitors against these viruses using molecular docking analysis.
View Article and Find Full Text PDFIn plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR).
View Article and Find Full Text PDF