Functionalizing graphene with exact pore size, specific functional groups, and precision doping poses many significant challenges. Current methods lack precision and produce random pore sizes, sites of attachment, and amounts of dopant, leading to compromised structural integrity and affecting graphene's applications. In this work, we report a strategy for the synthesis of functionalized graphitic materials with modifiable nanometer-sized pores via a Pictet-Spengler polymerization reaction.
View Article and Find Full Text PDFWe report the application of a Pictet-Spengler reaction to the synthesis of covalent organic frameworks (COFs) using functionalized terephthalaldehydes. The COFs produced show an increased propensity to generate screw dislocations and produce multilayered flakes when compared with other 2D-COFs. Using HRTEM, definitive evidence for screw dislocations was obtained and is presented.
View Article and Find Full Text PDFTwo-dimensional covalent organic frameworks (2D-COFs) exhibit characteristics ideal for membrane applications, such as high stability, tunability and porosity along with well-ordered nanopores. However, one of the many challenges with fabricating these materials into membranes is that membrane wetting can result in layer swelling. This allows molecules that would be excluded based on pore size to flow around the layers of the COF, resulting in reduced separation.
View Article and Find Full Text PDF