Publications by authors named "Alastuey A"

The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.

View Article and Find Full Text PDF

Advanced receptor models can leverage the information derived from optical and chemical variables as input by a variety of instruments at different time resolutions to extract the source specific absorption Ångström exponent (AAE) from aerosol absorption. The multilinear engine (ME-2), a Positive Matrix Factorization (PMF) solver, serves as a proficient tool for performing such analyses, thereby overcoming the constraints imposed by the assumptions in current optical source apportionment methods such as the Aethalometer approach since the use of a-priori AAE values introduces additional uncertainty into the results of optical methods. Comprehensive PM chemical speciation datasets, and aerosol absorption coefficients (b, λ) at seven wavelengths measured by an Aethalometer (AE33), were used in multi-time source apportionment (MT-PMF).

View Article and Find Full Text PDF

Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (b) and BrC (b) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)).

View Article and Find Full Text PDF

There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method.

View Article and Find Full Text PDF
Article Synopsis
  • Atmospheric new particle formation (NPF) is the natural process of creating tiny particles (sub-10 nm) from gases, observed globally in various environments.
  • Although these particles impact total and ultrafine particle concentrations, there is limited research on their health effects largely due to a lack of specific identifiers in existing data.
  • This study introduces an automated machine learning algorithm that identifies NPF events from particle data across 65 global measurement sites from 1996 to 2023, facilitating future research on NPF.
View Article and Find Full Text PDF

The rapid expansion of the aviation sector raises concerns about air quality impacts within and around airports. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential adverse health effects. In this study, particle number concentrations (PNC), particle number size distribution (PNSD), and other ancillary pollutants such as particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO), ozone (O), carbon monoxide (CO) and benzene, as well as organic markers and trace elements (in quasi-UFP) were measured at Barcelona-El Prat Airport (80 m and 250 m from the main taxiway and runway).

View Article and Find Full Text PDF

Atmospheric PM and benzo(a)pyrene (BaP) concentrations in Manlleu (NE Spain) have remained high from 2008 to 2023, frequently exceeding EU limit/target values, and reaching BaP levels up to six times higher than urban averages in Spain. Furthermore, PM speciation campaigns were carried out in 2013, 2014-2015, 2016-2017 and 2021-2022. Chemical mass closure for autumn-winter showed a consistent PM composition for the different PM speciation campaigns, comprising 46-53% organic matter (OM), 18-26% secondary inorganic aerosol (SIA), 13-23% mineral matter (MM), and 5-9% elemental carbon (EC).

View Article and Find Full Text PDF

Although many studies have discussed the impact of Europe's air quality, very limited research focused on the detailed phenomenology of ambient trace elements (TEs) in PM in urban atmosphere. This study compiled long-term (2013-2022) measurements of speciation of ambient urban PM from 55 sites of 7 countries (Switzerland, Spain, France, Greece, Italy, Portugal, UK), aiming to elucidate the phenomenology of 20 TEs in PM in urban Europe. The monitoring sites comprised urban background (UB, n = 26), traffic (TR, n = 10), industrial (IN, n = 5), suburban background (SUB, n = 7), and rural background (RB, n = 7) types.

View Article and Find Full Text PDF

Exposure to particulate matter (PM) pollution is a significant health risk, driving the search for innovative metrics that more accurately reflect the potential harm to human health. Among these, oxidative potential (OP) has emerged as a promising health-based metric, yet its application and relevance across different environments remain to be further explored. This study, set in two high-altitude Bolivian cities, aims to identify the most significant sources of PM-induced oxidation in the lungs and assess the utility of OP in assessing PM health impacts.

View Article and Find Full Text PDF

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on how to accurately measure equivalent black carbon (eBC) concentrations using filter absorption photometers (FAPs) by understanding the mass absorption cross-section (MAC).
  • Researchers analyzed data from 22 different sites to compare various methods for calculating MAC, leading to different classifications of eBC such as LeBC, MeBC, and ReBC, with significant differences observed in measurement outcomes.
  • Results showed that MAC varies by site and season, influencing the observed trends in elemental carbon (EC), revealing a need for careful MAC consideration when interpreting eBC data to reduce uncertainty in measurements.
View Article and Find Full Text PDF

Desert dust is currently recognized as a health risk factor. Therefore, the World Health Organization (WHO) is actively promoting the establishment of early warning systems for sand and dust storms. This study introduces a methodology to estimate the probability of African dust outbreaks occurring in eight different regions of the Iberian Peninsula and the Balearic Islands.

View Article and Find Full Text PDF

This study addressed the scarcity of NH measurements in urban Europe and the diverse monitoring protocols, hindering direct data comparison. Sixty-nine datasets from Finland, France, Italy, Spain, and the UK across various site types, including industrial (IND, 8), traffic (TR, 12), urban (UB, 22), suburban (SUB, 12), and regional background (RB, 15), are analyzed to this study. Among these, 26 sites provided 5, or more, years of data for time series analysis.

View Article and Find Full Text PDF

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season.

View Article and Find Full Text PDF

Black carbon (BC) has received increasing attention from researchers due to its adverse health effects. However, in-situ BC measurements are often not included as a regulated variable in air quality monitoring networks. Machine learning (ML) models have been studied extensively to serve as virtual sensors to complement the reference instruments.

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses the challenges of selecting appropriate chemical components for Positive Matrix Factorization (PMF) in aerosol source apportionment, highlighting that this choice greatly affects the identified sources and contribution estimates.
  • It emphasizes that the absence of specific source tracers, like levoglucosan, can skew results and lead to uncertainties in identifying and quantifying sources of particulate matter (PM).
  • The research includes sensitivity analyses across different urban conditions in Europe, revealing that while vehicle exhaust analysis may be less sensitive to component choices, neglecting certain inorganic elements can hinder the identification of non-exhaust sources.
View Article and Find Full Text PDF

Understanding the atmospheric processes involving carbonaceous aerosols (CAs) is crucial for assessing air pollution impacts on human health and climate. The sources and formation mechanisms of CAs are not well understood, making it challenging to quantify impacts in models. Studies suggest residential wood combustion (RWC) and traffic significantly contribute to CAs in Europe's urban and rural areas.

View Article and Find Full Text PDF

Air quality impairment has a massive impact on human health, with atmospheric particulate matter (PM) playing a major role. The People's Republic of China experienced a trend of increasing PM concentrations from 2000 to 2013. However, after the application of the Air Pollution Prevention and Control Action Plan and other related control measures, sharp decreases in air pollutant concentrations were particularly evident in the city of Wuhan (central China).

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) play a crucial role in the formation of ozone (O) and secondary organic aerosol (SOA). We conducted measurements of VOC ambient mixing ratios during both summer and winter at two stations: a Barcelona urban background station (BCN) and the Montseny rural background station (MSY). Subsequently, we employed positive matrix factorization (PMF) to analyze the VOC mixing ratios and identify their sources.

View Article and Find Full Text PDF

In highly industrialized areas, abating particulate matter (PM) is complex owing to the variety of emission sources with different chemical profiles that may mix in the atmosphere. Gijón-an industrial city in northern Spain-was selected as a case study to better understand the key emission sources and improve air quality in highly industrialized areas. Accordingly, the trends of various air quality indicators (PM10, PM2.

View Article and Find Full Text PDF

Organic aerosols (OA) have recently been shown to be the dominant contributor to the oxidative potential of airborne particulate matter in northeastern Spain. We collected PM filter samples every fourth day from January 2017 to March 2018 at two sampling stations located in Barcelona city and Montseny Natural Park, representing urban and rural areas, respectively. The chemical composition of PM was analyzed offline using a broad set of analytical instruments, including high-resolution time-of-flight mass spectrometry (HR-ToF-AMS), a total organic carbon analyzer (TCA), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), ion chromatography (IC), and thermal-optical carbon analyzer.

View Article and Find Full Text PDF

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined variations in equivalent black carbon (eBC) levels across urban Europe to assess its potential as a key air quality indicator, collecting data from various measurement stations from 2006 to 2022.
  • The findings emphasized the necessity for standardization in eBC measurements for better comparisons, revealing a decreasing trend in eBC levels from traffic zones to suburban and regional areas, with Southern cities generally having higher concentrations than those in the North.
  • Additionally, fossil fuel combustion, particularly from traffic, was identified as the primary source of eBC, and while there was an overall decreasing trend in eBC levels over the decade, some cities showed stable or slightly rising concentrations.
View Article and Find Full Text PDF

Tropospheric ozone (O) is a secondary air pollutant that affects human health, vegetation and climate, especially in Mediterranean countries such as Spain. In order to tackle this long-standing issue, the Spanish government recently started to design the Spanish O Mitigation Plan. To support this initiative and ultimately provide recommendations, we performed a first ambitious emission and air quality modeling exercise.

View Article and Find Full Text PDF