The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme.
View Article and Find Full Text PDFThe gram-negative bacterium Bradyrhizobium japonicum can take up structurally dissimilar ferric siderophores from the environment (xenosiderophores) to meet its nutritional iron requirements. Siderophore-bound iron transported into the periplasm is reduced to the ferrous form by FsrB, dissociated from the siderophore and the free ion is then transported into the cytoplasm by the ferrous iron transporter FeoAB. Here, we identified the RND family exporter genes exsFG and exsH in a selection for secondary site suppressor mutants that restore growth of an fsrB mutant on the siderophores ferrichrome or ferrioxamine.
View Article and Find Full Text PDFIn Bradyrhizobium japonicum, iron uptake from ferric siderophores involves selective outer membrane proteins and non-selective periplasmic and cytoplasmic membrane components that accommodate numerous structurally diverse siderophores. Free iron traverses the cytoplasmic membrane through the ferrous (Fe ) transporter system FeoAB, but the other non-selective components have not been described. Here, we identify fsrB as an iron-regulated gene required for growth on iron chelates of catecholate- and hydroxymate-type siderophores, but not on inorganic iron.
View Article and Find Full Text PDF