Publications by authors named "Alastair Tulloch"

Article Synopsis
  • The study investigates commissural neurons, which play a key role in coordinating information across the nervous system, focusing on their diverse origins and characteristics.
  • Researchers created mice with a specific genetic marker to study these neurons, revealing new insights into their molecular diversity and developmental pathways.
  • Findings contribute to the understanding of how commissural neurons mature and integrate into spinal cord circuits, paving the way for further research into their functions and connections.
View Article and Find Full Text PDF

Gonadotropin releasing hormone-1 (GnRH-1) neurons play a pivotal role in controlling pubertal onset and fertility once they reach their hypothalamic location. During embryonic development, GnRH-1 neurons migrate from the nasal area to the hypothalamus where they modulate gonadotropin release from the pituitary gland. Defective migration of the GnRH-1 neurons to the brain, lack of GnRH-1 secretion or signaling cause hypogonadotropic hypogonadism (HH), a pathology characterized by delayed or absence of puberty.

View Article and Find Full Text PDF

The alarmingly high rates of overweight and obesity pose a serious global health threat. Numerous factors can result in weight gain, one of which is excess consumption of caloric sweeteners. In an effort to aid weight loss efforts, many people have switched from caloric sweeteners to low calorie sweeteners, which provide sweet taste without the accompanying calories.

View Article and Find Full Text PDF

Binge eating is seen across the spectrum of eating disorder diagnoses as well as among individuals who do not meet diagnostic criteria. Analyses of the specific types of foods that are frequently binged upon reveal that sugar-rich items feature prominently in binge-type meals, making the effects of binge consumption of sugar an important focus of study. One avenue to do this involves the use of animal models.

View Article and Find Full Text PDF

The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity.

View Article and Find Full Text PDF

With rising rates of obesity, research continues to explore the contributions of homeostatic and hedonic mechanisms related to eating behaviour. In this Review, we synthesize the existing information on select biological mechanisms associated with reward-related food intake, dealing primarily with consumption of highly palatable foods. In addition to their established functions in normal feeding, three primary peripheral hormones (leptin, ghrelin and insulin) play important parts in food reward.

View Article and Find Full Text PDF