Integrating a desired DNA sequence into yeast genomes is a widely-used genetic manipulation in the budding yeast . The conventional integration method is to use an integrative plasmid such as pRS or YIplac series as the target DNA carrier. The nature of this method risks multiple integrations of the target DNA and the potential loss of integrated DNA during cell proliferation.
View Article and Find Full Text PDFThe budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined.
View Article and Find Full Text PDFA hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis.
View Article and Find Full Text PDFDuring meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear.
View Article and Find Full Text PDFMeiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells.
View Article and Find Full Text PDFDuring meiosis DNA double-strand breaks (DSBs) are induced and repaired by homologous recombination to create gene conversion and crossover products. Mostly these DSBs are made by Spo11, which covalently binds to the DSB ends. More rarely in Saccharomyces cerevisiae, other meiotic DSBs are formed by self-homing endonucleases such as VDE, which is site specific and does not covalently bind to the DSB ends.
View Article and Find Full Text PDFExo1 is a member of the Rad2 protein family and possesses both 5'-3' exonuclease and 5' flap endonuclease activities. In addition to performing a variety of functions during mitotic growth, Exo1 is also important for the production of crossovers during meiosis. However, its precise molecular role has remained ambiguous and several models have been proposed to account for the crossover deficit observed in its absence.
View Article and Find Full Text PDFAccurate DNA replication is essential to genome integrity and is controlled by five human RecQ helicases, of which at least three prevent cancer and ageing. Here, we have studied the role of RECQL5, which is the least characterised of the five human RecQ helicases. We demonstrate that overexpressed RECQL5 promotes survival during thymidine-induced slowing of replication forks in human cells.
View Article and Find Full Text PDFDuring meiosis there is an imperative to create sufficient crossovers for homologue segregation. This can be achieved during repair of programmed DNA double-strand breaks (DSBs), which are biased towards using a homologue rather than sister chromatid as a repair template. Various proteins contribute to this bias, one of which is a meiosis specific kinase Mek1.
View Article and Find Full Text PDFDuring meiosis, self-inflicted DNA double-strand breaks (DSBs) are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE), in cells lacking Dmc1 strand-exchange protein.
View Article and Find Full Text PDFHomologous recombination (HR) deficient cells are sensitive to methyl methanesulfonate (MMS). HR is usually involved in the repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae implying that MMS somehow induces DSBs in vivo. Indeed there is evidence, based on pulsed-field gel electrophoresis (PFGE), that MMS causes DNA fragmentation.
View Article and Find Full Text PDFAs yeast cells enter meiosis, chromosomes move from a centromere-clustered (Rabl) to a telomere-clustered (bouquet) configuration and then to states of progressive homolog pairing where telomeres are more dispersed. It is uncertain at which stage of this process sequences commit to recombine with each other. Previous analyses using recombination between dispersed homologous sequences (ectopic recombination) support the view that, on average, homologs are aligned end to end by the time of commitment to recombination.
View Article and Find Full Text PDFWe have studied the repair of a DNA-DSB created by the VMA1-derived endonuclease in mutants that have different levels of Spo11-DSBs: WT (sae2), few (hop1), and none (spo11-Y135F). In spo11-Y135F and hop1 cells, intrachromosomal repair is more frequent than in WT and sae2 cells. In spo11-Y135F cells there was no chromosome pairing or synapsis and a faster turnover of resected DNA.
View Article and Find Full Text PDF