Publications by authors named "Alastair Rushworth"

In the United Kingdom, air pollution is linked to around 40000 premature deaths each year, but estimating its health effects is challenging in a spatio-temporal study. The challenges include spatial misalignment between the pollution and disease data; uncertainty in the estimated pollution surface; and complex residual spatio-temporal autocorrelation in the disease data. This article develops a two-stage model that addresses these issues.

View Article and Find Full Text PDF

Many statistical models are available for spatial data but the vast majority of these assume that spatial separation can be measured by Euclidean distance. Data which are collected over river networks constitute a notable and commonly occurring exception, where distance must be measured along complex paths and, in addition, account must be taken of the relative flows of water into and out of confluences. Suitable models for this type of data have been constructed based on covariance functions.

View Article and Find Full Text PDF

It has long been known that air pollution is harmful to human health, as many epidemiological studies have been conducted into its effects. Collectively, these studies have investigated both the acute and chronic effects of pollution, with the latter typically based on individual level cohort designs that can be expensive to implement. As a result of the increasing availability of small-area statistics, ecological spatio-temporal study designs are also being used, with which a key statistical problem is allowing for residual spatio-temporal autocorrelation that remains after the covariate effects have been removed.

View Article and Find Full Text PDF

Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth.

View Article and Find Full Text PDF

The distributed lag model (DLM), used most prominently in air pollution studies, finds application wherever the effect of a covariate is delayed and distributed through time. We specify modified formulations of DLMs to provide computationally attractive, flexible varying-coefficient models that are applicable in any setting in which lagged covariates are regressed on a time-dependent response. We investigate the application of such models to rainfall and river flow and in particular their role in understanding the impact of hidden variables at work in river systems.

View Article and Find Full Text PDF