Publications by authors named "Alastair Magness"

Kirsten rat sarcoma virus (KRAS)-G12C inhibition causes remodeling of the lung tumor immune microenvironment and synergistic responses to anti-PD-1 treatment, but only in T cell infiltrated tumors. To investigate mechanisms that restrain combination immunotherapy sensitivity in immune-excluded tumors, we used imaging mass cytometry to explore cellular distribution in an immune-evasive KRAS mutant lung cancer model. Cellular spatial pattern characterization revealed a community where CD4 and CD8 T cells and dendritic cells were gathered, suggesting localized T cell activation.

View Article and Find Full Text PDF

Mutations in the epidermal growth factor receptor (EGFR) are common in non-small cell lung cancer (NSCLC), particularly in never-smoker patients. However, these mutations are not always carcinogenic, and have recently been reported in histologically normal lung tissue from patients with and without lung cancer. To investigate the outcome of EGFR mutation in healthy lung stem cells, we grow murine alveolar type II organoids monoclonally in a three-dimensional Matrigel.

View Article and Find Full Text PDF

The growing scale and dimensionality of multiplexed imaging require reproducible and comprehensive yet user-friendly computational pipelines. TRACERx-PHLEX performs deep learning-based cell segmentation (deep-imcyto), automated cell-type annotation (TYPEx) and interpretable spatial analysis (Spatial-PHLEX) as three independent but interoperable modules. PHLEX generates single-cell identities, cell densities within tissue compartments, marker positivity calls and spatial metrics such as cellular barrier scores, along with summary graphs and spatial visualisations.

View Article and Find Full Text PDF

Unlabelled: Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells).

View Article and Find Full Text PDF

A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development. Here we propose that environmental particulate matter measuring ≤2.

View Article and Find Full Text PDF

Aggregation kinetics of proteins and peptides have been studied extensively due to their significance in many human diseases, including neurodegenerative disorders, and the roles they play in some key physiological processes. However, most of these studies have been performed as bulk measurements using Thioflavin T or other fluorescence turn-on reagents as indicators of fibrillization. Such techniques are highly successful in making inferences about the nucleation and growth mechanism of fibrils, yet cannot directly measure assembly reactions at low protein concentrations which is the case for amyloid-β (Aβ) peptide under physiological conditions.

View Article and Find Full Text PDF

Aggregates of amyloid-β (Aβ) are characteristic of Alzheimer's disease, but there is no consensus as to either the nature of the toxic molecular complex or the mechanism by which toxic aggregates are produced. We report on a novel feature of amyloid-lipid interactions where discontinuities in the lipid continuum can serve as catalytic centers for a previously unseen microscale aggregation phenomenon. We show that specific lipid membrane conditions rapidly produce long contours of lipid-bound peptide, even at sub-physiological concentrations of Aβ.

View Article and Find Full Text PDF

Although RNA aptamers can show comparable or better specificity and affinity to antibodies and have the advantage of being able to access different live cell compartments, they are often much less stable . We report here the first aptamer that binds human retinoblastoma protein (RB) and is stable in live cells. RB is both a key protein in cell cycle control and also a tumour suppressor.

View Article and Find Full Text PDF