Publications by authors named "Alastair Little"

Poly(glycolic acid) (PGA) is a biodegradable polymer with high gas barrier properties, mechanical strength, and heat deflection temperature. However, PGA's brittleness severely limits its application in packaging, creating a need to develop PGA-based copolymers with improved elasticity that maintain its barrier properties and hydrolytic degradability. In this work, a series of PGBAT (poly(glycolic acid--butylene) adipate--butylene terephthalate) copolymers containing 21-92% glycolic acid () with values of 46,700-50,600 g mol were synthesized via melt polycondensation, and the effects of altering the on PGBAT's thermomechanical properties and hydrolysis rate were investigated.

View Article and Find Full Text PDF

The rise in demand for biodegradable plastic packaging with high barrier properties has spurred interest in poly(lactic acid--glycolic acid) (PLGA) copolymers with a relatively high glycolide content. In this work, we examined how reaction conditions affect the synthesis of PLGA25 (L:G 25:75) through the ring-opening polymerisation of d-l-lactide (L) and glycolide (G), using tin 2-ethylhexanoate (Sn(Oct)) as the catalyst and 1-dodecanol as the initiator. The effects of varying the initiator concentration, catalyst concentration, reaction time, and temperature on the molecular weight, monomer conversion, and thermal properties of PLGA25 were investigated.

View Article and Find Full Text PDF

Furandioate-adipate copolyesters are an emerging class of bio-based biodegradable polymers with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene adipate--terephthalate) (PBAT). Furandioate-adipate polyesters have almost exclusively been prepared with conventional primary (1°) alcohol diols, while secondary (2°) alcohol diol monomers have largely been overlooked until now, despite preliminary observations that using methyl-branched diols increases the of the resultant polyesters. Little is known of what impact the use of 2° alcohol diols has on other properties such as material strength, hydrophobicity, and rate of enzymatic hydrolysis-all key parameters for performance and end-of-life.

View Article and Find Full Text PDF