We report here a mechanistically distinct tactic to carry E2-type eliminations on alkyl halides. This strategy exploits the interplay of α-aminoalkyl radical-mediated halogen-atom transfer (XAT) with desaturative cobalt catalysis. The methodology is high-yielding, tolerates many functionalities, and was used to access industrially relevant materials.
View Article and Find Full Text PDFThe introduction of chlorine atoms into organic molecules is fundamental to the manufacture of industrial chemicals, the elaboration of advanced synthetic intermediates and also the fine-tuning of physicochemical and biological properties of drugs, agrochemicals and polymers. We report here a general and practical photochemical strategy enabling the site-selective chlorination of sp C-H bonds. This process exploits the ability of protonated N-chloroamines to serve as aminium radical precursors and also radical chlorinating agents.
View Article and Find Full Text PDFThe formation of carbon-nitrogen bonds for the preparation of aromatic amines is among the top five reactions carried out globally for the production of high-value materials, ranging from from bulk chemicals to pharmaceuticals and polymers. As a result of this ubiquity and diversity, methods for their preparation impact the full spectrum of chemical syntheses in academia and industry. In general, these molecules are assembled through the stepwise introduction of a reactivity handle in place of an aromatic C-H bond (that is, a nitro group, halogen or boronic acid) and a subsequent functionalization or cross-coupling.
View Article and Find Full Text PDF