Drought stress occurrence and recovery from drought can be detected using a single spatial set of simultaneous observations of SIF and canopy temperature records. Temporal and spatial responses to drought and heat stresses by plant stands of a drought-adapted diverse grassland ecosystem were studied using sun induced fluorescence (SIF,OA and OB bands) and further ecophysiological (canopy temperature (Tsurf), spatially modeled evapotranspiration, vegetation reflectance spectra) variables collected along spatial sampling grids while also utilizing eddy covariance measured carbon dioxide (net ecosystem exchange: NEE, gross primary production: GPP) and water flux (evapotranspiration: ET) data. The grids were of 0.
View Article and Find Full Text PDFProximal sensing is fundamental to monitor the spatial and seasonal dynamics of ecosystems and can be considered as a crucial validation tool to upscale in situ observations to the satellite level. Linking hyperspectral remote sensing with carbon fluxes and biophysical parameters is critical to allow the exploitation of spatial and temporal extensive information for validating model simulations at different scales. In this study, we present the WhiteRef, a new hyperspectral system designed as a direct result of the needs identified during the EUROSPEC ES0903 Cost Action, and developed by Fondazione Edmund Mach and the Institute of Biometeorology, CNR, Italy.
View Article and Find Full Text PDF