Publications by authors named "Alasdair J Stewart"

The expansion of electrochemical sensors to biomedical applications at point of care requires these sensors to undergo analysis without any pretreatment or extraction. This poses a major challenge for all electrochemical sensors including electrochemiluminescent (ECL)-based sensors. ECL offers many advantages for biomedical applications; however, obtaining results from complex matrixes has proven to be a large hurdle for the application of ECL sensors within this field.

View Article and Find Full Text PDF

We demonstrate that for quantum dot (QD) based electrochemiluminescence (ECL), the commonly used co-reactant does not perform as effectively as potassium persulfate. By exploiting this small change in co-reactant, ECL intensity can be enhanced dramatically in a cathodic-based ECL system. However, TPA remains the preferential co-reactant-based system for anodic ECL.

View Article and Find Full Text PDF

Direct detection of medically relevant biomarkers in whole blood without the need for pretreatment or extraction is a great challenge for biomedical analysis and diagnosis. Electrochemical techniques, such as electrochemiluminescence (ECL), are promising tools for this area of analysis. ECL offers high sensitivities together with the ability to obtain time and spacial control over the process.

View Article and Find Full Text PDF

This critical review covers the use of carbon nanomaterials (single-wall carbon nanotubes, multi-wall carbon nanotubes, graphene, and carbon quantum dots), semiconductor quantum dots, and composite materials based on the combination of the aforementioned materials, for analytical applications using electrogenerated chemiluminescence. The recent discovery of graphene and related materials, with their optical and electrochemical properties, has made possible new uses of such materials in electrogenerated chemiluminescence for biomedical diagnostic applications. In electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), electrochemically generated intermediates undergo highly exergonic reactions, producing electronically excited states that emit light.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqh552ukk2cf28flakugvunknq4abv3o5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once