Publications by authors named "Alasdair J E Gordon"

RNA viruses, like SARS-CoV-2, depend on their RNA-dependent RNA polymerases (RdRp) for replication, which is error prone. Monitoring replication errors is crucial for understanding the virus's evolution. Current methods lack the precision to detect rare de novo RNA mutations, particularly in low-input samples such as those from patients.

View Article and Find Full Text PDF

Both the SARS-CoV-2 virus and its mRNA vaccines depend on RNA polymerases (RNAP); however, these enzymes are inherently error-prone and can introduce variants into the RNA. To understand SARS-CoV-2 evolution and vaccine efficacy, it is critical to identify the extent and distribution of errors introduced by the RNAPs involved in each process. Current methods lack the sensitivity and specificity to measure RNA variants in low input samples like viral isolates.

View Article and Find Full Text PDF

RNA transcription errors are transient, yet frequent, events that do have consequences for the cell. However, until recently we lacked the tools to empirically measure and study these errors. Advances in RNA library preparation and next generation sequencing (NGS) have allowed the spectrum of transcription errors to be empirically measured over the entire transcriptome and in nascent transcripts.

View Article and Find Full Text PDF

Transcription is a fundamental cellular process and the first step in gene regulation. Although RNA polymerase (RNAP) is highly processive, in growing cells the progression of transcription can be hindered by obstacles on the DNA template, such as damaged DNA. The authors recent findings highlight a trade-off between transcription fidelity and DNA break repair.

View Article and Find Full Text PDF

It was recently shown that removal of GreA, a transcription fidelity factor, enhances DNA break repair. This counterintuitive result, arising from unresolved backtracked RNA polymerase impeding DNA resection and thereby facilitating RecA-loading, leads to an interesting corollary: error-free full-length transcripts and broken chromosomes. Therefore, transcription fidelity may compromise genomic integrity.

View Article and Find Full Text PDF

DksA is an auxiliary transcription factor that interacts with RNA polymerase and influences gene expression. Depending on the promoter, DksA can be a positive or negative regulator of transcription initiation. Moreover, DksA has a substantial effect on transcription elongation where it prevents the collision of transcription and replication machineries, plays a key role in maintaining transcription elongation when translation and transcription are uncoupled and has been shown to be involved in transcription fidelity.

View Article and Find Full Text PDF

Errors in information transfer from DNA to RNA to protein are inevitable. Here, we focus on errors that occur in nascent transcripts during transcription, epimutations. Recent approaches using novel cDNA library preparation and next-generation sequencing begin to directly determine the rate of epimutation and allow analysis of the epimutational spectrum of transcription errors, the type and sequence context of the errors produced in a transcript by an RNA polymerase.

View Article and Find Full Text PDF

Living in an oxygen-rich environment is dangerous for a cell. Reactive oxygen species can damage DNA, RNA, protein and lipids. The MutT protein in Escherichia coli removes 8-oxo-deoxyguanosine triphosphate (8-oxo-dGTP) and 8-oxo-guanosine triphosphate (8-oxo-GTP) from the nucleotide pools precluding incorporation into DNA and RNA.

View Article and Find Full Text PDF

Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations) and protein conformation (prions) can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change ('epimutations') remains an open question.

View Article and Find Full Text PDF

Unicellular organisms are constantly subject to sudden changes in environment. Here, we describe recent progress in understanding how epigenetic mechanisms can generate differentiation within genetically identical single cells of a clonal population. Such intrinsic phenotypic heterogeneity within a population may be considered as a bet-hedging strategy in fluctuating environments.

View Article and Find Full Text PDF

Bistable epigenetic switches are fundamental for cell fate determination in unicellular and multicellular organisms. Regulatory proteins associated with bistable switches are often present in low numbers and subject to molecular noise. It is becoming clear that noise in gene expression can influence cell fate.

View Article and Find Full Text PDF