Quantitative evidence for the risk of zoonoses and the spread of antimicrobial resistance remains lacking. Here, as part of the UrbanZoo project, we sampled Escherichia coli from humans, livestock and peri-domestic wildlife in 99 households across Nairobi, Kenya, to investigate its distribution among host species in this rapidly developing urban landscape. We performed whole-genome sequencing of 1,338 E.
View Article and Find Full Text PDFLow-complexity regions (LCRs) on proteins have attracted increasing attention recently due to their role in the assembly of membraneless organelles or granules by liquid-liquid phase separation. Several examples of such granules have been shown to sequester RNA and proteins in an inactive state, providing an important mechanism for dynamic post-transcriptional gene regulation. In trypanosome parasites, post-transcriptional control overwhelmingly dominates gene regulation due to the organisation of their genome into polycistronic transcription units.
View Article and Find Full Text PDFMethyl-CpG-binding domain-2 (Mbd2) acts as an epigenetic regulator of gene expression, by linking DNA methylation to repressive chromatin structure. Although Mbd2 is widely expressed in gastrointestinal immune cells and is implicated in regulating intestinal cancer, anti-helminth responses and colonic inflammation, the Mbd2-expressing cell types that control these responses are incompletely defined. Indeed, epigenetic control of gene expression in cells that regulate intestinal immunity is generally poorly understood, even though such mechanisms may explain the inability of standard genetic approaches to pinpoint the causes of conditions like inflammatory bowel disease.
View Article and Find Full Text PDFFine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity.
View Article and Find Full Text PDFInfection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H.
View Article and Find Full Text PDFDendritic cells (DCs) direct CD4(+) T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function.
View Article and Find Full Text PDFThe archetypal Th2 cytokine IL-4 has previously been shown to alternatively activate murine macrophages and, more recently, dendritic cells (DCs) both in vitro and in vivo. IL-4 has also been shown to induce Aldh1a2 (aldehyde dehydrogenase 1a2) expression in murine macrophages recruited to the peritoneal cavity. However, the influence of IL-4 on DC Aldh1a2 induction in vivo has not yet been addressed.
View Article and Find Full Text PDFGlobal production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases.
View Article and Find Full Text PDFBackground: The infective schistosome cercaria develops within the intramolluscan daughter sporocyst from an undifferentiated germ ball, during which synthesis of proteins essential for infection occurs. When the aquatic cercaria locates the mammalian host it rapidly penetrates into the epidermis using glandular secretions. It then undergoes metamorphosis into the schistosomulum, including replacement of its tegument surface membranes, a process taking several days before it exits the skin.
View Article and Find Full Text PDFSchistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (< or =36 bp) symmetric exons organized in tandem.
View Article and Find Full Text PDFBackground: Novel methods to identify anthelmintic drug and vaccine targets are urgently needed, especially for those parasite species currently being controlled by singular, often limited strategies. A clearer understanding of the transcriptional components underpinning helminth development will enable identification of exploitable molecules essential for successful parasite/host interactions. Towards this end, we present a combinatorial, bioinformatics-led approach, employing both statistical and network analyses of transcriptomic data, for identifying new immunoprophylactic and therapeutic lead targets to combat schistosomiasis.
View Article and Find Full Text PDFBackground: Genome sequencing of Leishmania species that give rise to a range of disease phenotypes in the host has revealed highly conserved gene content and synteny across the genus. Only a small number of genes are differentially distributed between the three species sequenced to date, L. major, L.
View Article and Find Full Text PDFBackground: Schistosome cercariae only elicit high levels of protective immunity against a challenge infection if they are optimally attenuated by exposure to ionising radiation that truncates their migration in the lungs. However, the underlying molecular mechanisms responsible for the altered phenotype of the irradiated parasite that primes for protection have yet to be identified.
Methodology/principal Findings: We have used a custom microarray comprising probes derived from lung-stage parasites to compare patterns of gene expression in schistosomula derived from normal and irradiated cercariae.
Background: The role played by microRNAs (miRs) as common regulators in physiologic processes such as development and various disease states was recently highlighted. Retinitis pigmentosa (RP) linked to RHO (which encodes rhodopsin) is the most frequent form of inherited retinal degeneration that leads to blindness, for which there are no current therapies. Little is known about the cellular mechanisms that connect mutations within RHO to eventual photoreceptor cell death by apoptosis.
View Article and Find Full Text PDFThe lung schistosomulum of Schistosoma mansoni is a validated target of protective immunity elicited in vaccinated mice. To identify genes expressed at this stage we constructed a microarray, representing 3088 contigs and singlets, with cDNA derived from in vitro cultured larvae and used it to screen RNA from seven life-cycle stages. Clustering of genes by expression profile across the life cycle revealed a number of membrane, membrane-associated and secreted proteins up-regulated at the lung stage, that may represent potential immune targets.
View Article and Find Full Text PDFLeishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function.
View Article and Find Full Text PDFA comparison of gene content and genome architecture of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, revealed a conserved core proteome of about 6200 genes in large syntenic polycistronic gene clusters. Many species-specific genes, especially large surface antigen families, occur at nonsyntenic chromosome-internal and subtelomeric regions. Retroelements, structural RNAs, and gene family expansion are often associated with syntenic discontinuities that-along with gene divergence, acquisition and loss, and rearrangement within the syntenic regions-have shaped the genomes of each parasite.
View Article and Find Full Text PDFCentralisation of tools for analysis of genomic data is paramount in ensuring that research is always carried out on the latest currently available data. As such, World Wide Web sites providing a range of online analyses and displays of data can play a crucial role in guaranteeing consistency of in silico work. In this respect, the protozoan parasite research community is served by several resources, either focussing on data and tools for one species or taking a broader view and providing tools for analysis of data from many species, thereby facilitating comparative studies.
View Article and Find Full Text PDFAs genomic sequencing of Leishmania nears completion, functional analyses that provide a global genetic perspective on biological processes are important. Despite polycistronic transcription, RNA transcript abundance can be measured using microarrays. To provide a resource to evaluate cDNA arrays, we undertook 5' expressed sequence tag analysis of 2183 full-length randomly selected cDNAs from Leishmania major promastigote (days 3, 7, 10 of culture in vitro), and lesion-derived amastigote libraries.
View Article and Find Full Text PDFGeneDB (http://www.genedb.org/) is a genome database for prokaryotic and eukaryotic organisms.
View Article and Find Full Text PDFLeishmania parasites (order Kinetoplastida, family Trypanosomatidae) cause a spectrum of human diseases ranging from asymptomatic to lethal. The approximately 33.6 Mb genome is distributed among 36 chromosome pairs that range in size from approximately 0.
View Article and Find Full Text PDFThe genome of Schistosoma mansoni contains a proviral form of a retrovirus-like long terminal repeat (LTR) retrotransposon, designated BOUDICCA: Sequence and structural characterization of the new mobile genetic element, which was found in bacterial artificial chromosomes prepared from S. mansoni genomic DNA, revealed the presence of three putative open reading frames (ORFs) bounded by direct LTRs of 328 bp in length. ORF1 encoded a retrovirus-like major homology region and a Cys/His box motif, also present in Gag polyproteins of related retrotransposons and retroviruses.
View Article and Find Full Text PDFLeishmania species are intracellular parasites that inhabit a parasitophorous vacuole (PV) within host macrophages and engage with the host endo-membrane network to avoid clearance from the cell. Intracellular Leishmania amastigotes exhibit a high degree of proteolytic/lysosomal activity that may assist degradation of MHC class II molecules and subsequent interruption of antigen presentation. As an aid to further analysis of the endosomal/lysosomal events that could facilitate this process, we have characterised a Leishmania homologue of the late endosomal marker, Rab7, thought to be involved in the terminal steps of endocytosis and lysosomal delivery.
View Article and Find Full Text PDFLeishmania are protozoan parasites that cause extensive morbidity and mortality in humans. Genes for two new isoforms of the protein kinase A catalytic subunit (PKAC) in Leishmania, Lmpkac2a and Lmpkac2b, were cloned and characterized. The predicted open reading frames for these isoforms are 93.
View Article and Find Full Text PDF