Viral capsid assembly is a complex and critical process, essential for understanding viral behavior, evolution, and the development of antiviral treatments, vaccines, and nanotechnology. Significant progress in studying viral capsid assembly has been achieved through various computational approaches, including molecular dynamics (MD) simulations, stochastic dynamics simulations, coarse-grained (CG) models, electrostatic analyses, lattice models, hybrid techniques, machine learning methods, and kinetic models. Each of these techniques offers unique advantages, and by integrating these diverse computational strategies, researchers can more accurately model the dynamic behaviors and structural features of viral capsids, deepening our understanding of the assembly process.
View Article and Find Full Text PDFDendritic ZSM-5 zeolites were investigated in the isomerization of monoterpene epoxides, including limonene-1,2-epoxide (LE), α-pinene epoxide, and β-pinene epoxide, which yields high-value compounds used in fragrances, cosmetics, and pharmaceuticals. The fresh catalysts were thoroughly characterized using XRD, Ar physisorption, pyridine-FTIR, TEM, FTIR/DTBPyr, and Al MAS NMR. In comparison with conventional and hierarchical ZSM-5 materials, the dendritic zeolite with a crystallization time of 4 days (d-ZSM-5/4d) was the most active material, with a turnover frequency value of 4.
View Article and Find Full Text PDFHydrogels are a class of biomaterials that can provide a three-dimensional (3D) environment capable of mimicking the extracellular matrix of native tissues. In this chapter, we present a method to generate electrospun nanofibers for the purpose of reinforcing hydrogels. The addition of electrospun fibers can be used to improve the mechanical properties of hydrogels and broaden their range of applications.
View Article and Find Full Text PDFThe field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts.
View Article and Find Full Text PDFA plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials.
View Article and Find Full Text PDFObjective: Open science is a movement and set of practices to conduct research more transparently. Implementing open science will significantly improve public access and supports equity. It also has the potential to foster innovation and reduce duplication through data and materials sharing.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2023
Heart disease remains the leading cause of worldwide mortality. Although the last decades have broadened our understanding of the biology behind the pathologies of heart disease, systems capable of mimicking disease progression and abnormal heart function using human cells remain elusive. In this contribution, an open-access electromechanical system (BEaTS-β) capable of mimicking the environment of cardiac disease is reported.
View Article and Find Full Text PDFAgroinfiltration is a method used in biopharming to support plant-based biosynthesis of therapeutic proteins such as antibodies and viral antigens involved in vaccines. Major advantages of generating proteins in plants is the low cost, massive scalability and the rapid yield of the technology. Herein, we report the agroinfiltration-based production of glycosylated SARS-CoV-2 Spike receptor-binding domain (RBD) protein.
View Article and Find Full Text PDFExpanding the toolbox of therapeutic materials for soft tissue and organ repair has become a critical component of tissue engineering. While animal- and plant-derived proteins are the foundation for developing biomimetic tissue constructs, using peptides as either constituents or frameworks for the materials has gained increasing momentum in recent years. This mini review discusses recent advances in peptide-based biomaterials' design and application.
View Article and Find Full Text PDFBackground: Neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD) can be disruptive for patients and their families.
Objective: We aimed to classify patients based on NPS and to explore the relationship of these classes with sex and with caregiver burden.
Methods: The study cohort comprised individuals with AD dementia diagnosed at Ace Alzheimer Center in Barcelona, Spain, between 2011-2020.
Bioprinting has rapidly progressed over the past decade. One branch of bioprinting known as bioprinting has benefitted considerably from innovations in biofabrication. Unlike bioprinting, bioprinting allows for biomaterials to be printed directly into or onto the target tissue/organ, eliminating the need to transfer pre-made three-dimensional constructs.
View Article and Find Full Text PDFIt has been demonstrated that quantum-rate electrodynamics originate from charged quantum states within redox moieties coupled to electrodes. In this study, we demonstrate that this phenomenon is not restricted to redox reactions, and that it is applicable to certain charge screening conditions that depend on electron-ion pairing phenomena. Quantum-rate electrodynamics governs the dynamics of charged inorganic semiconductor states at the nanoscale level.
View Article and Find Full Text PDFBiomaterials are scaffolds designed to mimic the extracellular matrix and stimulate tissue repair. Biomaterial therapies have shown promise for improving wound healing in cardiac tissue after ischemic injury. An unintentional consequence of biomaterial delivery may be the stimulation of inflammation through recruitment of circulating monocytes into the tissue.
View Article and Find Full Text PDFThe tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.
View Article and Find Full Text PDFWe report the development, as well as the and testing, of a sprayable nanotherapeutic that uses surface engineered custom-designed multiarmed peptide grafted nanogold for on-the-spot coating of an infarcted myocardial surface. When applied to mouse hearts, 1 week after infarction, the spray-on treatment resulted in an increase in cardiac function (2.4-fold), muscle contractility, and myocardial electrical conductivity.
View Article and Find Full Text PDFAntibacterial properties of copper against planktonic bacteria population are affected by surface microstructure and topography. However, copper interactions with bacteria in a biofilm state are less studied. This work aims at better understanding the difference in biofilm inhibition of bulk, cold-sprayed, and shot-peened copper surfaces and gaining further insights on the underlying mechanisms using optical and scanning electron microscopy to investigate the topography and microstructure of the surfaces.
View Article and Find Full Text PDFThe goal of this study was to develop strategies to localize human collagen-based hydrogels within an infarcted mouse heart, as well as analyze its impact on endogenous extracellular matrix (ECM) remodeling. Collagen is a natural polymer that is abundantly used in bioengineered hydrogels because of its biocompatibility, cell permeability, and biodegradability. However, without the use of tagging techniques, collagen peptides derived from hydrogels can be difficult to differentiate from the endogenous ECM within tissues.
View Article and Find Full Text PDFWe have studied the suitability of using a molecular rotor-based steady-state fluorometric assay for evaluating changes in both the conformation and the viscosity of collagen-like peptide solutions. Our results indicate that a positive charge incorporated on the hydrophobic tail of the BODIPY molecular rotor favours the dye specificity as a reporter for viscosity of these solutions.
View Article and Find Full Text PDFPurpose Of Review: This review describes the latest advances in cell therapy, biomaterials and 3D bioprinting for the treatment of cardiovascular disease.
Recent Findings: Cell therapies offer the greatest benefit for patients suffering from chronic ischemic and nonischemic cardiomyopathy. Rather than replacing lost cardiomyocytes, the effects of most cell therapies are mediated by paracrine signalling, mainly through the induction of angiogenesis and immunomodulation.
In the present work, we evaluated the supramolecular interactions between three photosensitizers, namely toluidine blue O (TBO, positively charged) and two fatty acid conjugates of 6 and 14 carbon atoms chain lengths (TBOC6 and TBOC14), with human serum albumin (HSA) and the macrocycle cucurbit[7]uril (CB[7]), alone or in combination within a biosupramolecular system as potential carriers of photosensitizers for Photodynamic therapy (PDT). Binding studies were carried out using photophysical and calorimetric techniques and accompanied with molecular docking simulations. Amphiphilic photosensitizers, particularly TBOC14, showed stronger binding to HSA and (CB[7]).
View Article and Find Full Text PDFPoly(vinyl chloride) (PVC) is the most used biomedical polymer worldwide. PVC is a stable and chemically inert polymer. However, microorganisms can colonize PVC producing biomedical device-associated infections.
View Article and Find Full Text PDFThe aim of this work was to evaluate the performance of vertical subsurface flow treatment wetlands (VSSF TWs) for treating rural domestic wastewater when strategies such as bed depth reduction and media change are used in combination with bottom saturation. Two treatment wetland systems were implemented: normal (VF-N), with a bed depth of 1.0 m, and modified (VF-M), with a bed depth of 0.
View Article and Find Full Text PDFBiofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing and biofilm models.
View Article and Find Full Text PDF