The Human Immunodeficiency Virus-1 (HIV-1) tends to activate cellular promoters driving expression of pro-viral genes by complex host-virus interactions for productive infection. We have previously demonstrated that expression of such a positive host factor HSF1 (heat shock factor 1) is elevated during HIV-1 infection; however, the mechanism remains to be elucidated. In the present study, we therefore examined whether HSF1 promoter is induced during HIV-1 infection leading to up-regulation of hsf1 gene expression.
View Article and Find Full Text PDFThe Human Immunodeficiency Virus-1 (HIV-1) is known to modulate the host environment for successful replication and propagation like other viruses. The virus utilises its proteins to interact with or modulate host factors and host signalling pathways that may otherwise restrict the virus. A previous study from our lab has shown that the host heat shock protein 70 (HSP70) binding protein (HSPBP1) is a co-chaperone that inhibits viral replication.
View Article and Find Full Text PDFHeat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response.
View Article and Find Full Text PDFThe recent burst of explorations on heat shock protein 90 (HSP90) in virus research supports its emergence as a promising target to overcome the drawbacks of current antiviral therapeutic regimen. In continuation of our efforts towards the discovery of novel anti-retroviral molecules, we designed, synthesized fifteen novels 2-isoxazol-3-yl-acetamide based compounds (2a-o) followed by analysis of their anti-HIV activity and cytotoxicity studies. 2a-b, 2e, 2j, and 2l-m were found to be active with inhibitory potentials >80% at their highest non-cytotoxic concentration (HNC).
View Article and Find Full Text PDF