Publications by authors named "Alanna Spiteri"

Several (inter)national longitudinal dementia observational datasets encompassing demographic information, neuroimaging, biomarkers, neuropsychological evaluations, and muti-omics data, have ushered in a new era of potential for integrating machine learning (ML) into dementia research and clinical practice. ML, with its proficiency in handling multi-modal and high-dimensional data, has emerged as an innovative technique to facilitate early diagnosis, differential diagnosis, and to predict onset and progression of mild cognitive impairment and dementia. In this review, we evaluate current and potential applications of ML, including its history in dementia research, how it compares to traditional statistics, the types of datasets it uses and the general workflow.

View Article and Find Full Text PDF
Article Synopsis
  • IL-6 enhances tissue monitoring, mobility, and the ability of microglia to engulf debris, while IFN-⍺ reduces these functions in mouse microglia.
  • *This research connects changes at the genetic level (transcriptome) with how microglia behave.
  • *The findings could help pave the way for developing treatments for neuroinflammatory diseases driven by cytokines.
View Article and Find Full Text PDF

CD8 T cells are critical to the adaptive immune response against viral pathogens. However, overwhelming antigen exposure can result in their exhaustion, characterised by reduced effector function, failure to clear virus, and the upregulation of inhibitory receptors, including programmed cell death 1 (PD-1). However, exhausted T cell responses can be "re-invigorated" by inhibiting PD-1 or the primary ligand of PD-1: PD-L1.

View Article and Find Full Text PDF

Microglia are the innate myeloid cells of the central nervous system (CNS) parenchyma, functionally implicated in almost every defined neuroinflammatory and neurodegenerative disorder. Current understanding of disease pathogenesis for many neuropathologies is limited and/or lacks reliable diagnostic markers, vaccines, and treatments. With the increasing aging of society and rise in neurogenerative diseases, improving our understanding of their pathogenesis is essential.

View Article and Find Full Text PDF

Natural killer (NK) cells are cytotoxic lymphocytes important for viral defense. West Nile virus (WNV) infection of the central nervous system (CNS) causes marked recruitment of bone marrow (BM)-derived monocytes, T cells and NK cells, resulting in severe neuroinflammation and brain damage. Despite substantial numbers of NK cells in the CNS, their function and phenotype remain largely unexplored.

View Article and Find Full Text PDF

Regulatory T cells (Treg) maintain immune homeostasis due to their anti-inflammatory functions. They can be generated either centrally in the thymus or in peripheral organs. Metabolites such as short-chain fatty acids produced by intestinal microbiota can induce peripheral Treg differentiation, by activating G-protein-coupled-receptors like GPR109A.

View Article and Find Full Text PDF

Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6C inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes.

View Article and Find Full Text PDF

As the resident parenchymal myeloid population in the central nervous system (CNS), microglia are strategically positioned to respond to neurotropic virus invasion and have been implicated in promoting both disease resolution and progression in the acute and post-infectious phase of virus encephalitis. In a mouse model of West Nile virus encephalitis (WNE), infection of the CNS results in recruitment of large numbers of peripheral immune cells into the brain, the majority being nitric oxide (NO)-producing Ly6C inflammatory monocyte-derived cells (MCs). In this model, these cells enhance immunopathology and mortality.

View Article and Find Full Text PDF

The sphingolipids galactosylceramide (GalCer), sulfatide (ST) and sphingomyelin (SM) are essential for myelin stability and function. GalCer and ST are synthesized mostly from C22-C24 ceramides, generated by Ceramide Synthase 2 (CerS2). To clarify the requirement for C22-C24 sphingolipid synthesis in myelin biosynthesis and stability, we generated mice lacking CerS2 specifically in myelinating cells (CerS2 ).

View Article and Find Full Text PDF

Microglia and bone marrow-derived monocytes are key elements of central nervous system (CNS) inflammation, both capable of enhancing and dampening immune-mediated pathology. However, the study-specific focus on individual cell types, disease models or experimental approaches has limited our ability to infer common and disease-specific responses. This meta-analysis integrates bulk and single-cell transcriptomic datasets of microglia and monocytes from disease models of autoimmunity, neurodegeneration, sterile injury, and infection to build a comprehensive resource connecting myeloid responses across CNS disease.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how SARS-CoV-2 affects the eyes and nervous system in K18-hACE2 transgenic mice using different infection methods.* -
  • Mice infected through their noses showed ocular inflammation and cytokine production, while intratracheal infection allowed the virus to travel from the lungs to the brain and eyes.* -
  • The research confirms that the virus can affect the eyes and nervous system but eye drops do not lead to lung infection, offering insights that may enhance understanding of COVID-19's transmission and symptoms.*
View Article and Find Full Text PDF

Inflammatory monocytes are a major component of the cellular infiltrate in acutely rejecting human kidney allografts. Since immune-modifying nanoparticles (IMPs) bind to circulating inflammatory monocytes via the specific scavenger receptor MARCO, causing diversion to the spleen and subsequent apoptosis, we investigated the therapeutic potential of negatively charged, 500-nm diameter polystyrene IMPs to prevent kidney allograft rejection. Kidney transplants were performed from BALB/c (H2) to C57BL/6 (H2) mice in two groups: controls (allo) and allo mice infused with IMPs.

View Article and Find Full Text PDF

PLX5622 is a CSF-1R inhibitor and microglia-depleting reagent, widely used to investigate the biology of this central nervous system (CNS)-resident myeloid population, but the indirect or off-target effects of this agent remain largely unexplored. In a murine model of severe neuroinflammation induced by West Nile virus encephalitis (WNE), we showed PLX5622 efficiently depleted both microglia and a sub-population of border-associated macrophages in the CNS. However, PLX5622 also significantly depleted mature Ly6C monocytes in the bone marrow (BM), inhibiting their proliferation and lethal recruitment into the infected brain, reducing neuroinflammation and clinical disease scores.

View Article and Find Full Text PDF

Dietary fiber supports healthy gut bacteria and their production of short-chain fatty acids (SCFA), which promote anti-inflammatory cell development, in particular, regulatory T cells. It is thus beneficial in many diseases, including influenza infection. While disruption of the gut microbiota by antibiotic treatment aggravates West Nile Virus (WNV) disease, whether dietary fiber is beneficial is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Microglia and monocytes have different yet sometimes overlapping roles in immune responses related to neurological diseases, but distinguishing them has been challenging due to insufficient markers and techniques.
  • Recent advancements in single-cell technologies and specific markers have improved our ability to identify these cell types, yet studies often focus narrowly on one at the expense of broader connections across various diseases.
  • This review aims to catalog the specific functions of microglia and monocytes in conditions like viral encephalitis, demyelination, neurodegeneration, and ischemic injury, emphasizing their unique roles and potential therapeutic targets.
View Article and Find Full Text PDF

Background: Differentiating infiltrating myeloid cells from resident microglia in neuroinflammatory disease is challenging, because bone marrow-derived inflammatory monocytes infiltrating the inflamed brain adopt a 'microglia-like' phenotype. This precludes the accurate identification of either cell type without genetic manipulation, which is important to understand their temporal contribution to disease and inform effective intervention in its pathogenesis. During West Nile virus (WNV) encephalitis, widespread neuronal infection drives substantial CNS infiltration of inflammatory monocytes, causing severe immunopathology and/or death, but the role of microglia in this remains unclear.

View Article and Find Full Text PDF

As the size and complexity of high-dimensional (HD) cytometry data continue to expand, comprehensive, scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across batches or experiments are not well incorporated into computational toolkits to allow for streamlined workflows.

View Article and Find Full Text PDF

Inflammation of the brain parenchyma is characteristic of neurodegenerative, autoimmune, and neuroinflammatory diseases. During this process, microglia, which populate the embryonic brain and become a permanent sentinel myeloid population, are inexorably joined by peripherally derived monocytes, recruited by the central nervous system. These cells can quickly adopt a morphology and immunophenotype similar to microglia.

View Article and Find Full Text PDF