The one-carbon folate enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is a promising therapeutic target in cancer. MTHFD2 is upregulated across numerous cancer types, promotes growth and metastasis of cancer, and correlates with poorer survival. Recent studies have developed small-molecule inhibitors to the isozymes MTHFD2 and MTHFD1 that show promise as anticancer agents through different mechanisms.
View Article and Find Full Text PDFMultiple myeloma is an incurable haematological cancer. The increase in targeted therapies has improved the number of myeloma patients achieving a complete response and improved progression-free survival following therapy. However, a low level of disease or minimal residual disease (MRD) still persists which contributes to the inevitable relapse in myeloma patients.
View Article and Find Full Text PDFThe folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells.
View Article and Find Full Text PDFHematopoiesis is extrinsically controlled by cells of the bone marrow microenvironment, including skeletal lineage cells. The identification and subsequent studies of distinct subpopulations of maturing skeletal cells is currently limited because of a lack of methods to isolate these cells. We found that murine Lin-CD31-Sca-1-CD51+ cells can be divided into 4 subpopulations by using flow cytometry based on their expression of the platelet-derived growth factor receptors ⍺ and β (PDGFR⍺ and PDGFRβ).
View Article and Find Full Text PDFMultiple myeloma is a plasma cell malignancy that causes debilitating bone disease and fractures, in which TGFβ plays a central role. Current treatments do not repair existing damage and fractures remain a common occurrence. We developed a novel low tumor phase murine model mimicking the plateau phase in patients as we hypothesized this would be an ideal time to treat with a bone anabolic.
View Article and Find Full Text PDFArtemin is a neurotrophic factor that plays a crucial role in the regulation of neural development and regeneration and has also been implicated in the pathogenesis of inflammatory pain. The receptor for artemin, GFRα3, is expressed by sympathetic and nociceptive sensory neurons, including some that innervate the bone marrow, but it is unclear if it is also expressed in other cell types in the bone marrow. Our goal in the present study was to characterise the expression of GFRα3 in nonneuronal cells in the bone marrow.
View Article and Find Full Text PDFMultiple myeloma is a plasma cell malignancy, which develops in the bone marrow and frequently leads to severe bone destruction. Current antiresorptive therapies to treat the bone disease do little to repair damaged bone; therefore, new treatment strategies incorporating bone anabolic therapies are urgently required. We hypothesized that combination therapy using the standard of care antiresorptive zoledronic acid (Zol) with a bone anabolic (anti-TGFβ/1D11) would be more effective at treating myeloma-induced bone disease than Zol therapy alone.
View Article and Find Full Text PDFRetinoic acid receptor (RAR) signaling regulates bone structure and hematopoiesis through intrinsic and extrinsic mechanisms. This study aimed to establish how early in the osteoblast lineage loss of RARγ (Rarg) disrupts the bone marrow microenvironment. Bone structure was analyzed by micro-computed tomography (μCT) in Rarg mice and mice with Rarg conditional deletion in Osterix-Cre-targeted osteoblast progenitors or Prrx1-Cre-targeted mesenchymal stem cells.
View Article and Find Full Text PDFEarly B lymphopoiesis occurs in the bone marrow and is reliant on interactions with numerous cell types in the bone marrow microenvironment, particularly those of the mesenchymal lineage. Each cellular niche that supports the distinct stages of B lymphopoiesis is unique. Different cell types and signaling molecules are important for the progressive stages of B lymphocyte differentiation.
View Article and Find Full Text PDFVitamin A has essential but largely unexplained roles in regulating lymphopoiesis. We have previously shown that retinoic acid receptor (RAR) γ-deficient mice have hematopoietic defects, some phenotypes of which were microenvironment induced. Bone marrow (BM) microenvironment cells identified by either their expression of nestin (Nes) or osterix (Osx) have previously been shown to have roles in regulating lymphopoiesis.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2016
Vitamin A and retinoid derivatives are recognized as morphogens that govern body patterning and skeletogenesis, producing profound defects when in excess. In post-natal bone, both high and low levels of vitamin A are associated with poor bone heath and elevated risk of fractures. Despite this, the precise mechanism of how retinoids induce post-natal bone changes remains elusive.
View Article and Find Full Text PDFVitamin A is known to influence post-natal bone content, with excess intake being associated with reduced bone mineral density and increased fracture risk. Despite this, the roles retinoids play in regulating osteoclastogenesis, particularly in vivo, remain unresolved. This study therefore aimed to determine the effect of loss of retinoic acid receptors (RAR)α or RARγ on bone mass (analyzed by histomorphometry and dual-energy X-ray absorptiometry) and osteoclastogenesis in mice in vivo.
View Article and Find Full Text PDFWnt pathway targeting is of high clinical interest for treating bone loss disorders such as osteoporosis. These therapies inhibit the action of negative regulators of osteoblastic Wnt signaling. The report that Wnt inhibitory factor 1 (WIF1) was epigenetically silenced via promoter DNA methylation in osteosarcoma (OS) raised potential concerns for such treatment approaches.
View Article and Find Full Text PDF