In asthma, tissue factor (TF) levels are elevated in the lung. In our previous studies using mechanically compressed human bronchial epithelial (HBE) cells, which are a well-defined in vitro model of bronchoconstriction during asthma exacerbations, we detected TF within extracellular vesicles (EVs) released from compressed HBE cells. Here, to better characterize the potential role of this mechanism in asthma, we tested the extent to which the transcriptional regulation of epithelial cell-derived TF varied between donors with and without asthma.
View Article and Find Full Text PDFObjective: The Philippines experienced one of the longest restriction periods during the COVID-19 pandemic. This study aimed to provide a developmental profile of 18-25 month-old children and identify factors associated with their development during their early years being born and raised during the pandemic.
Methods: The study population was recruited through convenience sampling among families living in proximity to the daycare centers in Cainta, Rizal, Philippines.
Background: Human rhinoviruses are known to predispose infants to asthma development during childhood and are often associated with exacerbations in asthma patients. MYADM epithelial expression has been shown to associate with asthma severity. The goal of this study was to determine if MYADM expression patterns were altered in asthma and/or rhinovirus infection and if increased MYADM expression is associated with increased asthma-associated factors.
View Article and Find Full Text PDFBackground: Rhinovirus (RV) infection of airway epithelial cells triggers asthma exacerbations, during which airway smooth muscle (ASM) excessively contracts. Due to ASM contraction, airway epithelial cells become mechanically compressed. We previously reported that compressed human bronchial epithelial (HBE) cells are a source of endothelin-1 (ET-1) that causes ASM contraction.
View Article and Find Full Text PDFClub Cell Secretory Protein (CC16) plays many protective roles within the lung; however, the complete biological functions, especially regarding the pulmonary epithelium during infection, remain undefined. We have previously shown that CC16-deficient (CC16) mouse tracheal epithelial cells (MTECs) have enhanced Mp burden compared to CC16-sufficient (WT) MTECs; therefore, in this study, we wanted to further define how the pulmonary epithelium responds to infection in the context of CC16 deficiency. Using mass spectrometry and quantitative proteomics to analyze proteins secreted apically from MTECs grown at an air-liquid interface, we investigated the protective effects that CC16 elicits within the pulmonary epithelium during (Mp) infection.
View Article and Find Full Text PDFBackground: Screen time in young children is discouraged because of its negative effects on their development. However, excessive screen media use has been rising, particularly during the global pandemic when stay-at-home mandates were placed on young children in several countries. This study documents potential developmental effects of excessive screen media use.
View Article and Find Full Text PDFSurfactant protein A (SP-A) is well-known for its protective role in pulmonary immunity. Previous studies from our group have shown that SP-A mediates eosinophil activities, including degranulation and apoptosis. In order to identify potential binding partners on eosinophils for SP-A, eosinophil lysates were subjected to SP-A pull-down and tandem mass spectrometry (MS/MS) analysis.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2020
The lung surfactant proteins are recognized as critical not only for their role in lowering lung surface tension but also in innate host defense. Reports have shown that some asthmatic patients have decreased levels of one member of this protein family in particular, surfactant protein-A (SP-A). Our studies set out to determine the contribution of SP-A to the response of a key effector cytokine in asthma, IL-13.
View Article and Find Full Text PDFSurfactant protein-A (SP-A) is an important mediator of pulmonary immunity. A specific genetic variation in , corresponding to a glutamine (Q) to lysine (K) amino acid substitution at position 223 of the lectin domain, was shown to alter the ability of SP-A to inhibit eosinophil degranulation. Because a large subgroup of asthmatics have associated eosinophilia, often accompanied by inflammation associated with delayed clearance, our goal was to define how SP-A mediates eosinophil resolution in allergic airways and whether genetic variation affects this activity.
View Article and Find Full Text PDFAsthma remains one of the most common respiratory diseases in both children and adults affecting up to 10% of the US population. Asthma is characterized by persistent symptoms, airway inflammation, airflow limitation and frequent exacerbations. Eosinophils are a key immune cell present in a large majority of asthmatics and their presence and dysregulation are clinically associated with more severe asthma.
View Article and Find Full Text PDF