Terpenoid natural products are generally derived from isoprenyl diphosphate precursors with trans double-bond configuration, and no diterpenoid derived from the cisoid precursor (Z,Z,Z)-nerylneryl diphosphate (1) has yet been identified. Here further investigation of a terpenoid biosynthetic gene cluster from tomato is reported, which resulted in identification of a biosynthetic pathway from 1, in a pathway featuring a number of interesting transformations. Compound 1 is first cyclized to a tricyclene core ring structure analogous to that found in α-santalene, with the resulting diterpene termed here lycosantalene (2).
View Article and Find Full Text PDFIt has become apparent that plants have extensively diversified their arsenal of labdane-related diterpenoids (LRDs), in part via gene duplication and neo-functionalization of the ancestral ent-kaurene synthase (KS) required for gibberellin metabolism. For example, castor bean (Ricinus communis) was previously shown to produce an interesting set of biosynthetically related diterpenes, specifically ent-sandracopimaradiene, ent-beyerene, and ent-trachylobane, in addition to ent-kaurene, using four separate diterpene synthases, albeit these remain unidentified. Notably, despite mechanistic similarity of the underlying reaction to that catalyzed by KSs, ent-beyerene and ent-trachylobane synthases have not yet been identified.
View Article and Find Full Text PDF