During prostate development, basal and luminal cell lineages are generated through symmetric and asymmetric divisions of bipotent basal cells. However, the extent to which spindle orientation controls division symmetry or cell fate, and the upstream factors regulating this process, are still elusive. We report that GATA3 is expressed in both prostate basal progenitor and luminal cells and that loss of GATA3 leads to a mislocalization of PRKCZ, resulting in mitotic spindle randomization during progenitor cell division.
View Article and Find Full Text PDFRho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain.
View Article and Find Full Text PDFLoss of the tumor suppressor PTEN is a common occurrence in prostate cancer. This aberration leads to the ectopic activation of the PI3K-Akt pathway, which promotes tumor growth. Here, we show that the transcription factor Gata3 is progressively lost in Pten-deficient mouse prostate tumors as a result of both transcriptional down-regulation and increased proteasomal degradation.
View Article and Find Full Text PDFCurrent therapeutic strategies against Wilms' tumor (WT) reach 80% to 85% success rate. In spite of this, a remaining 15% to 20% of tumors relapse and are associated with increased metastasis and poor prognosis. To identify new regulators of WT progression, we screened for developmental target genes of Pax2, a key regulator of kidney development and a WT signature gene.
View Article and Find Full Text PDFInt J Biochem Cell Biol
September 2007
Apoptosis has been shown to be associated with altered glycosylation patterns and biosynthesis of glycoproteins. A major cell surface receptor involved in the induction of apoptosis is Fas that is activated by binding Fas ligand but can also be activated by binding anti-Fas antibody. In order to determine whether the Fas receptor is glycosylated, the extracellular domain of human Fas (shFas) was expressed as a cleavable fusion protein (shFas-Fc) in HeLa cells.
View Article and Find Full Text PDF