Senescent osteocytes are key contributors to age-related bone loss and fragility; however, the impact of mechanobiological changes in these cells remains poorly understood. This study provides a novel analysis of these changes in primary osteocytes following irradiation-induced senescence. By integrating subcellular mechanical measurements with gene expression analyses, we identified significant, time-dependent alterations in the mechanical properties of senescent bone cells.
View Article and Find Full Text PDFBecause cells vary in thickness and in biomechanical properties, the use of a constant force trigger during atomic force microscopy (AFM) stiffness mapping produces a varied nominal strain that can obfuscate the comparison of local material properties. In this study, we measured the biomechanical spatial heterogeneity of ovarian and breast cancer cells by using an indentation-dependent pointwise Hertzian method. Force curves and surface topography were used together to determine cell stiffness as a function of nominal strain.
View Article and Find Full Text PDFThe correlation between cardiovascular disease and iron deficiency anemia (IDA) is well documented but poorly understood. Using a multi-disciplinary approach, we explore the hypothesis that the biophysical alterations of red blood cells (RBCs) in IDA, such as variable degrees of microcytosis and decreased deformability may directly induce endothelial dysfunction via mechanobiological mechanisms. Using a combination of atomic force microscopy and microfluidics, we observed that subpopulations of IDA RBCs (idRBCs) are significantly stiffer and smaller than both healthy RBCs and the remaining idRBC population.
View Article and Find Full Text PDFVolumetric muscle loss (VML) injuries after extremity trauma results in an important clinical challenge often associated with impaired healing, significant fibrosis, and long-term pain and functional deficits. While acute muscle injuries typically display a remarkable capacity for regeneration, critically sized VML defects present a dysregulated immune microenvironment which overwhelms innate repair mechanisms leading to chronic inflammation and pro-fibrotic signaling. In this series of studies, we developed an immunomodulatory biomaterial therapy to locally modulate the sphingosine-1-phosphate (S1P) signaling axis and resolve the persistent pro-inflammatory injury niche plaguing a critically sized VML defect.
View Article and Find Full Text PDFRegeneration of skeletal muscle after volumetric injury is thought to be impaired by a dysregulated immune microenvironment that hinders endogenous repair mechanisms. Such defects result in fatty infiltration, tissue scarring, chronic inflammation, and debilitating functional deficits. Here, we evaluated the key cellular processes driving dysregulation in the injury niche through localized modulation of sphingosine-1-phosphate (S1P) receptor signaling.
View Article and Find Full Text PDFWe present measurements of relative intensity noise versus various levels of optical feedback for 1.3 μm quantum dot lasers epitaxially grown on silicon for the first time. A systematic comparison is made with heterogeneously integrated 1.
View Article and Find Full Text PDFHigh performance III-V lasers at datacom and telecom wavelengths on on-axis (001) Si are needed for scalable datacenter interconnect technologies. We demonstrate electrically injected quantum dot lasers grown on on-axis (001) Si patterned with {111} v-grooves lying in the [110] direction. No additional Ge buffers or substrate miscut was used.
View Article and Find Full Text PDFWe demonstrate the first electrically pumped continuous-wave (CW) III-V semiconductor lasers epitaxially grown on on-axis (001) silicon substrates without offcut or germanium layers, using InAs/GaAs quantum dots as the active region and an intermediate GaP buffer between the silicon and device layers. Broad-area lasers with uncoated facets achieve room-temperature lasing with threshold current densities around 860 A/cm and 110 mW of single-facet output power for the same device. Ridge lasers designed for low threshold operations show maximum lasing temperatures up to 90°C and thresholds down to 30 mA.
View Article and Find Full Text PDFWe report comparison of lasing dynamics in InAs quantum dot (QD) micro-disk lasers (MDLs) monolithically grown on V-groove patterned and planar Si (001) substrates. TEM characterizations reveal abrupt interfaces and reduced threading dislocations in the QD active regions when using the GaAs-on-V-grooved-Si template. The improved crystalline quality translates into lower threshold power in the optically pumped continuous-wave MDLs.
View Article and Find Full Text PDFDirect integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut.
View Article and Find Full Text PDF