The monarch butterfly (Danaus plexippus) is a vagile species that undertakes an annual, multi-generational migration across North America. The abundance of this species at both eastern and western overwintering sites in Central Mexico and California indicates a population decline. Success of continental-scale conservation programs for a migratory species depends on providing, maintaining, and protecting habitats at appropriate temporal and spatial scales.
View Article and Find Full Text PDFOver the past century, the dendrochronology technique of crossdating has been widely used to generate a global network of tree-ring chronologies that serves as a leading indicator of environmental variability and change. Only recently, however, has this same approach been applied to growth increments in calcified structures of bivalves, fish and corals in the world's oceans. As in trees, these crossdated marine chronologies are well replicated, annually resolved and absolutely dated, providing uninterrupted multi-decadal to millennial histories of ocean palaeoclimatic and palaeoecological processes.
View Article and Find Full Text PDFThe seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward.
View Article and Find Full Text PDFHigh-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time. Originally developed for tree-ring data, crossdating is the only such procedure that ensures all increments have been assigned the correct calendar year of formation.
View Article and Find Full Text PDFAssessing temporal variability in extreme rainfall events before the historical era is complicated by the sparsity of long-term "direct" storm proxies. Here we present a 2,200-y-long, accurate, and precisely dated record of cave flooding events from the northwest Australian tropics that we interpret, based on an integrated analysis of meteorological data and sediment layers within stalagmites, as representing a proxy for extreme rainfall events derived primarily from tropical cyclones (TCs) and secondarily from the regional summer monsoon. This time series reveals substantial multicentennial variability in extreme rainfall, with elevated occurrence rates characterizing the twentieth century, 850-1450 CE (Common Era), and 50-400 CE; reduced activity marks 1450-1650 CE and 500-850 CE.
View Article and Find Full Text PDFRationale: Research on the ocean carbon cycle is vitally important due to the projected impacts of atmospheric CO2 on global temperatures and climate change, but also on ocean chemistry. The direct influence of this CO2 rise on the seawater pH can be evaluated from the boron isotopic composition in biogenic carbonates; however, conscientious laboratory techniques and data treatment are vital in obtaining accurate and precise results. A rapid-throughput boron purification and Total Evaporation Thermal Ionization Mass Spectrometry method was developed for high accuracy and precision boron isotopic analysis for small (ng) sample sizes.
View Article and Find Full Text PDFDespite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate.
View Article and Find Full Text PDF