Publications by authors named "Alan Turner"

The femora of diapsids have undergone morphological changes related to shifts in postural and locomotor modes, such as the transition from plesiomorphic amniote and diapsid taxa to the apomorphic conditions related to a more erect posture within Archosauriformes. One remarkable clade of Triassic diapsids is the chameleon-like Drepanosauromorpha. This group is known from numerous articulated but heavily compressed skeletons that have the potential to further inform early reptile femoral evolution.

View Article and Find Full Text PDF

Chronic hepatitis C virus (HCV) is common. Treatment with direct acting antivirals (DAA) result in high sustained virologic response (SVR) associated with normalization of alanine aminotransferase (ALT). However, abnormal ALT after SVR has been observed.

View Article and Find Full Text PDF

A central challenge for biology is to reveal how different levels of biological variation interact and shape diversity. However, recent experimental studies have indicated that prevailing models of evolution cannot readily explain the link between micro- and macroevolution at deep timescales. Here, we suggest that this paradox could be the result of a common mechanism driving a correlated pattern of evolution.

View Article and Find Full Text PDF

Eopneumatosuchus colberti Crompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology of E.

View Article and Find Full Text PDF

Thalattosuchians represent one of the several independent transitions into the marine realm among crocodylomorphs. The extent of their aquatic adaptations ranges from the semiaquatic teleosauroids, superficially resembling extant gharials, to the almost cetacean-like pelagic metriorhynchids. Understanding the suite of osteological, physiological, and sensory changes that accompanied this major transition has received increased attention, but is somewhat hindered by a dearth of complete three-dimensionally preserved crania.

View Article and Find Full Text PDF

Dyrosaurids were highly specialized, largely marine, relatives of living crocodylians, and one of the few archosaur lineages to survive the K-Pg extinction. Dyrosaurids lived during the Cretaceous to the Eocene and represent a unique combination of morphology and ecology not seen in living crocodylians. Little is known about their endocranial anatomy, leaving many questions about their neurosensory adaptations unaddressed.

View Article and Find Full Text PDF

Background: Patients with thoracic aortic dilatation who undergo annual computed tomography angiography (CTA) are subject to repeated radiation and contrast exposure. The purpose of this study was to evaluate the feasibility of a non-contrast, respiratory motion-resolved whole-heart cardiovascular magnetic resonance angiography (CMRA) technique against reference standard CTA, for the quantitative assessment of cardiovascular anatomy and monitoring of disease progression in patients with thoracic aortic dilatation.  METHODS: Twenty-four patients (68.

View Article and Find Full Text PDF

Pterosaurs were the first vertebrates to evolve powered flight and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton.

View Article and Find Full Text PDF

Mesozoic birds display considerable diversity in size, flight adaptations and feather organization, but exhibit relatively conserved patterns of beak shape and development. Although Neornithine (that is, crown group) birds also exhibit constraint on facial development, they have comparatively diverse beak morphologies associated with a range of feeding and behavioural ecologies, in contrast to Mesozoic birds. Here we describe a crow-sized stem bird, Falcatakely forsterae gen.

View Article and Find Full Text PDF

Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood.

View Article and Find Full Text PDF

New discoveries at the Arlington Archosaur Site (AAS), a Cenomanian (Late Cretaceous) locality in north-central Texas, are filling gaps in our knowledge of mid-Cretaceous Appalachian ecosystems, which remain poorly characterized. The AAS is notable because it preserves a diverse crocodyliform record. As seen in other sites that preserve four or more crocodyliform taxa, the species present at the AAS exhibit different snout shapes and body sizes, indicating that this high diversity of sympatric species was likely sustainable due to niche partitioning.

View Article and Find Full Text PDF

Late Cretaceous dinosaur assemblages of North America-characterized by gigantic tyrannosaurid predators, and large-bodied herbivorous ceratopsids and hadrosaurids-were highly successful from around 80 million years ago (Ma) until the end of the 'Age of Dinosaurs' 66 Ma. However, the origin of these iconic faunas remains poorly understood because of a large, global sampling gap in the mid-Cretaceous, associated with an extreme sea-level rise. We describe the most complete skeleton of a predatory dinosaur from this gap, which belongs to a new tyrannosauroid theropod from the Middle Turonian (~92 Ma) of southern Laramidia (western North America).

View Article and Find Full Text PDF

Objectives: To investigate the diagnostic accuracy of a modified three-material decomposition calcium subtraction (CS) algorithm for the detection of arterial stenosis in dual-energy CT angiography (DE-CTA) of the lower extremity runoff compared to standard image reconstruction, using digital subtraction angiography (DSA) as the reference standard.

Methods: Eighty-eight patients (53 males; mean age, 65.9 ± 11 years) with suspected peripheral arterial disease (PAD) who had undergone a DE-CTA examination of the lower extremity runoff between May 2014 and May 2015 were included in this IRB-approved, HIPAA-compliant retrospective study.

View Article and Find Full Text PDF

Understanding growth patterns is central to properly interpreting paleobiological signals in tetrapods, but assessing skeletal maturity in some extinct clades may be difficult when growth patterns are poorly constrained by a lack of ontogenetic series. To overcome this difficulty in assessing the maturity of extinct archosaurian reptiles-crocodylians, birds and their extinct relatives-many studies employ bone histology to observe indicators of the developmental stage reached by a given individual. However, the relationship between gross morphological and histological indicators of maturity has not been examined in most archosaurian groups.

View Article and Find Full Text PDF

Extant crocodylomorphs are semiaquatic ambush predators largely restricted to freshwater or estuarine environments, but the group is ancestrally terrestrial and inhabited a variety of ecosystems in the past. Despite its rich ecological history, little effort has focused on elucidating the historical pattern of ecological transitions in the group. Traditional views suggested a single shift from terrestrial to aquatic in the Early Jurassic.

View Article and Find Full Text PDF

The crystal structures, Hirshfeld surface analyses and electrostatic potential surfaces of the di- and tri-hydrates of (5α,17E)-17-hydrazonoandrostan-3-ol, 3, namely [3·(HO)] and [3·(HO)], are reported. The trihydrate, isolated from a solution of 3 in moist methanol, recrystallizes in the orthorhombic space group, P222, while that of the dihydrate, isolated from a 1:1 aqueous methanol solution, recrystallizes in the monoclinic space group, P2. The asymmetric unit of the trihydrate involves one steroid and three water molecules, while that of the dihydrate has two similar but independent steroid molecules and four hydrate molecules.

View Article and Find Full Text PDF

The crystal structures and Hirshfeld surface analyses of two hemi-solvates of 3α-hydroxy-16α-bromoandrostan-17-one, 3, namely [(3).(HO)] and [(3).(MeOH)], are reported.

View Article and Find Full Text PDF

Simões et al. () argued that large matrices are linked to the construction of "problematic" characters, and that those characters negatively affect tree topology. In their re-evaluation of two squamate datasets, however, Simões et al.

View Article and Find Full Text PDF

Given that complex behavior evolved multiple times independently in different lineages, a crucial question is whether these independent evolutionary events coincided with modifications to common neural systems. To test this question in mammals, we investigate the lateral cerebellum, a neurobiological system that is novel to mammals, and is associated with higher cognitive functions. We map the evolutionary diversification of the mammalian cerebellum and find that relative volumetric changes of the lateral cerebellar hemispheres (independent of cerebellar size) are correlated with measures of domain-general cognition in primates, and are characterized by a combination of parallel and convergent shifts towards similar levels of expansion in distantly related mammalian lineages.

View Article and Find Full Text PDF

Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values.

View Article and Find Full Text PDF

The tetrapod forelimb is one of the most versatile structures in vertebrate evolution, having been co-opted for an enormous array of functions. However, the structural relationships between the bones of the forelimb have remained largely unchanged throughout the 375 million year history of Tetrapoda, with a radius and ulna made up of elongate, paralleling shafts contacting a series of shorter carpal bones. These features are consistent across nearly all known tetrapods, suggesting that the morphospace encompassed by these taxa is limited by some sort of constraint(s).

View Article and Find Full Text PDF

Rauisuchids are large (2-6 m in length), carnivorous, and quadrupedal pseudosuchian archosaurs closely related to crocodylomorphs. Though geographically widespread, fossils of this clade are relatively rare in Late Triassic assemblages. The middle Norian (∼212 Ma) Hayden Quarry of northern New Mexico, USA, in the Petrified Forest Member of the Chinle Formation, has yielded isolated postcranial elements and associated skull elements of a new species of rauisuchid.

View Article and Find Full Text PDF

The lineage leading to modern Crocodylia has undergone dramatic evolutionary changes in morphology, ecology and locomotion over the past 200+ Myr. These functional innovations may be explained in part by morphological changes in the axial skeleton, which is an integral part of the vertebrate locomotor system. Our objective was to estimate changes in osteological range of motion (RoM) and intervertebral joint stiffness of thoracic and lumbar vertebrae with increasing aquatic adaptation in crocodylomorphs.

View Article and Find Full Text PDF

Living birds constitute the only vertebrate group whose brain volume relative to body size approaches the uniquely expanded values expressed by mammals. The broad suite of complex behaviors exhibited by crown-group birds, including sociality, vocal learning, parental care, and flying, suggests the origins of their encephalization was likely driven by a mosaic of selective pressures. If true, the historical pattern of brain expansion may be more complex than either a gradual expansion, as proposed by early studies of the avian brain, or a sudden expansion correlating with the appearance of flight.

View Article and Find Full Text PDF

A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.

View Article and Find Full Text PDF