Analysing the composition and organisation of the fibrous capsule formed as a result of the Foreign Body Response (FBR) to medical devices, is imperative for medical device improvement and biocompatibility. Typically, analysis is performed using histological techniques which often involve random sampling strategies. This method is excellent for acquiring representative values but can miss the unique spatial distribution of features in 3D, especially when analysing devices used in large animal studies.
View Article and Find Full Text PDFBackground: This study aims to address the potential of ex vivo diffusion tensor imaging to provide insight into the microstructural composition and morphological arrangement of aged human atherosclerotic carotid arteries.
Methods: In this study, whole human carotid arteries were investigated both anatomically and by comparing healthy and diseased regions. Nonrigid image registration was used with unsupervised segmentation to investigate the influence of elastin, collagen, cell density, glycosaminoglycans, and calcium on diffusion tensor imaging derived metrics (fractional anisotropy and mean diffusivity).
Exchange reactions between multidentate ligands (also known as chelating agents) contribute to kinetic control of metal ion speciation in aquatic environments. However, the complexity of the stepwise reaction mechanism complicates predictions of kinetic behavior (rates, rate laws, and mechanisms). Clarity is achieved with the adjunctive-semijunctive-disjunctive paradigm, which categorizes multidentate ligand exchange pathways along a continuum according to the decreasing ease of forming intermediate mixed-ligand ternary complexes.
View Article and Find Full Text PDFUpstream process development seeks to optimize media formulations to promote robust cell culture conditions and regulate product quality attributes such as glycosylation, aggregation, and charge variants. Transition metal ions Mn, Fe, Cu, and Zn present in cell culture media have a significant impact on cell growth, metabolism and product quality. These metals and other media components can have different chemical associations or speciation in media that are poorly characterized but may significantly impact their properties and effect on cellular performance.
View Article and Find Full Text PDFEnviron Sci Technol
November 2021
P-containing H-phosphonate (HPO) and its monoethyl ester (fosetyl), essential pesticides for control of oomycete and fungal pathogens, are among the few pesticides transported by both xylem and phloem, making application as folia spray, soil spray, and trunk injection equally effective. To understand bioavailability and efficacy within soils, knowledge of adsorption to soil minerals is important. FeOOH(goethite) is often selected as an archetypal mineral surface.
View Article and Find Full Text PDFPurpose: To characterize microstructural contributions to the magnetic susceptibility of carotid arteries.
Method: Arterial vessels were scanned using high-resolution quantitative susceptibility mapping (QSM) at 7 Tesla. Models of vessel degradation were generated using ex vivo porcine carotid arteries that were subjected to several different enzymatic digestion treatments that selectively removed microstructural components (smooth muscle cells, collagen, and elastin).
Streamlined Quantitative BOLD (sqBOLD) is an MR technique that can non-invasively measure physiological parameters including Oxygen Extraction Fraction (OEF) and deoxygenated blood volume (DBV) in the brain. Current sqBOLD methodology rely on fitting a linear model to log-transformed data acquired using an Asymmetric Spin Echo (ASE) pulse sequence. In this paper, a non-linear model implemented in a Bayesian framework was used to fit physiological parameters to ASE data.
View Article and Find Full Text PDFQuantitative BOLD (qBOLD) is a technique for mapping oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) in the human brain. Recent measurements using an asymmetric spin echo (ASE) based qBOLD approach produced estimates of DBV which were systematically higher than measurements from other techniques. In this study, we investigate two hypotheses for the origin of this DBV overestimation using simulations and consider the implications for experimental measurements.
View Article and Find Full Text PDFAt pH 4.0, hydrous manganese oxide (HMO) oxidizes mandelic acid by two mole-equivalents of electrons, yielding phenylglyoxylic acid and benzaldehyde. These intermediates, in turn, are oxidized by two mole-equivalents of electrons to the same ultimate oxidation product, benzoic acid.
View Article and Find Full Text PDFMetabolic markers of baseline brain oxygenation and tissue perfusion have an important role to play in the early identification of ischaemic tissue in acute stroke. Although well established MRI techniques exist for mapping brain perfusion, quantitative imaging of brain oxygenation is poorly served. Streamlined-qBOLD (sqBOLD) is a recently developed technique for mapping oxygenation that is well suited to the challenge of investigating acute stroke.
View Article and Find Full Text PDFMicrobes use siderophores to access essential iron resources in the environment. Over 500 siderophores are known, but they utilize a small set of common moieties to bind iron. Azotobacter chroococcum expresses iron-rich nitrogenases, with which it reduces N .
View Article and Find Full Text PDFQuantitative BOLD (qBOLD) is a non-invasive MR technique capable of producing quantitative measurements of the haemodynamic and metabolic properties of the brain. Here we propose a refinement of the qBOLD methodology, dubbed streamlined-qBOLD, in order to provide a clinically feasible method for mapping baseline brain oxygenation. In streamlined-qBOLD confounding signal contributions are minimised during data acquisition through the application of (i) a Fluid Attenuated Inversion Recovery (FLAIR) preparation to remove cerebral spinal fluid (CSF) signal contamination, (ii) a Gradient Echo Slice Excitation Profile Imaging (GESEPI) acquisition to reduce the effect of macroscopic magnetic field gradients and (iii) an Asymmetric Spin Echo (ASE) pulse sequence to directly measure the reversible transverse relaxation rate, R'.
View Article and Find Full Text PDFFrom trauma to amnesia to senior moments, memory has been a major plot line in films since the 1942 classic, Random Harvest. John Seamon, an author and professor of psychology whose research includes how a camera aids memory and the impact of storytelling on memory, has shifted his lens to focus on how memory has been portrayed in one of the world's most beloved art forms.
View Article and Find Full Text PDFThe reversible transverse relaxation rate, R2', is sensitive to the deoxyhaemoglobin content of brain tissue, enabling information about the oxygen extraction fraction to be obtained. However, R2' is also sensitive to macroscopic magnetic field gradients, particularly at air-tissue interfaces where a large susceptibility difference is present. It is important that this latter effect is minimised in order to produce meaningful estimates of blood oxygenation.
View Article and Find Full Text PDFSeveral techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2.
View Article and Find Full Text PDFRecently a new class of calibrated blood oxygen level dependent (BOLD) functional magnetic resonance imaging (MRI) methods were introduced to quantitatively measure the baseline oxygen extraction fraction (OEF). These methods rely on two respiratory challenges and a mathematical model of the resultant changes in the BOLD functional MRI signal to estimate the OEF. However, this mathematical model does not include all of the effects that contribute to the BOLD signal, it relies on several physiological assumptions and it may be affected by intersubject physiological variability.
View Article and Find Full Text PDFManganese sulfide (MnS(s)) minerals exist in sulfidic environments and can have unique reactive abilities because of sulfide, which is a known reductant, and Mn, the oxyhydroxides of which are known oxidants. This study elucidated the role of MnS(s) in controlling Cr speciation with implications on its fate and toxicity in the natural environment, specifically sulfidic sediments that undergo biogeochemical changes due to sediment resuspension during dredging, bioturbation, and flood events. In continuously mixed batch reaction experiments, aqueous CrVI reduction under anaerobic conditions occurred primarily on the surface of MnS(s) displaying a biphasic behavior- the initial rapid removal of CrVI from solution was followed by a slow decline due to surface passivation by reaction products, mainly sorbed or precipitated CrIII.
View Article and Find Full Text PDFReprod Health Matters
November 2014
Global statistics on unplanned pregnancies, abortions and STIs show that unprotected sex is still widely practised. More needs to be done to provide women and men with a wider choice of convenient protective options. To address this need, international efforts are focusing on developing multipurpose prevention technologies (MPTs) that address two or more indications simultaneously.
View Article and Find Full Text PDFBackground: The intention of giving written feedback is to close the gap between the standard achieved and the standard desired, but students do not always read it. Web-based marking tools are increasingly being used in assessment practices to deliver the feedback. What motivates students to read the feedback provided, especially since the advent of these online marking tools, is poorly understood.
View Article and Find Full Text PDFEnviron Sci Technol
August 2013
Predicting the aquatic and human health impacts of chromium (Cr) necessitates one to determine its speciation as either relatively nontoxic Cr(III) or toxic Cr(VI) and elucidate the influence of biogeochemical changes on its behavior and fate. In the Baltimore Harbor, Cr predominantly exists as Cr(III) associated with sediments. While reduction of Cr(VI) to Cr(III) is dominant in these anoxic sediments, the potential of Cr(III) oxidation and Cr(VI) reoccurrence during sediment resuspension and oxygenation resulting from dredging, bioturbation, and flood events poses a serious concern.
View Article and Find Full Text PDFBlood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is most commonly used in a semi-quantitative manner to infer changes in brain activity. Despite the basis of the image contrast lying in the cerebral venous blood oxygenation level, quantification of absolute cerebral metabolic rate of oxygen consumption (CMRO2) has only recently been demonstrated. Here we examine two approaches to the calibration of fMRI signal to measure absolute CMRO2 using hypercapnic and hyperoxic respiratory challenges.
View Article and Find Full Text PDFObjective: To provide researchers, product sponsors, drug regulators, and funding organizations with a convenient reference regarding regulatory guidance for microbicide development and licensure.
Methods: WHO and other leading agencies in the microbicide field sponsored a series of technical consultations over the past decade that engaged a wide range of international experts in regional settings of primary relevance for microbicide development, testing, and eventual use. This article summarizes the results of those consultations against the ever-changing background of HIV prevention.