Publications by authors named "Alan Seifert"

Article Synopsis
  • The study focuses on improving spectral quality in the cerebellum during 7 T MRI scans by using a wireless RF array that reduces signal dropouts from low transmit efficiency.
  • A series of in vivo experiments on a Siemens 7 T scanner showed that the RF array significantly enhanced signal-to-noise ratio (SNR) by an average factor of 2.2, particularly in the posterior fossa.
  • The findings suggest that this technology could lower RF transmission power and data acquisition time, providing a cost-effective solution for enhanced detection sensitivity in MRI and H-MRS applications.
View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a risk factor for neurodegeneration and cognitive decline, yet the underlying pathophysiologic mechanisms are incompletely understood. This gap in knowledge is in part related to the lack of analytic methods to account for cortical lesions in prior neuroimaging studies. The objective of this study was to develop a lesion detection tool and apply it to an investigation of longitudinal changes in brain structure among individuals with chronic TBI.

View Article and Find Full Text PDF
Article Synopsis
  • Clinical research typically requires careful study designs that account for variables like sex and age, but often overlooks body size factors like height and weight in neuroimaging studies.
  • This study analyzed data from 267 healthy adults to explore how body height and weight relate to various brain and spinal cord MRI metrics, finding significant correlations, especially with brain gray matter volume and cervical spinal cord area.
  • The results suggest that body size is an important biological variable that should be included in clinical neuroimaging study designs to enhance accuracy in understanding brain and spinal cord structures.
View Article and Find Full Text PDF

Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B inhomogeneity.

View Article and Find Full Text PDF
Article Synopsis
  • The RECOVER-Pathology study focuses on analyzing the long-term effects of SARS-CoV-2 (long COVID) by examining postmortem tissue to better understand the prevalence and types of organ injuries related to PASC.
  • The study will involve detailed autopsies of individuals who died at least 15 days after their initial COVID-19 infection, with the aim of linking pathological findings to clinical characteristics and identifying potential causes of ongoing symptoms.
  • As the largest autopsy study on long COVID in the U.S., RECOVER-Pathology seeks to contribute significantly to knowledge about the mechanisms behind organ damage and to help guide future treatments.
View Article and Find Full Text PDF

Background: Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability.

View Article and Find Full Text PDF

Lifelong brain health consequences of traumatic brain injury (TBI) include the risk of neurodegenerative disease. Up to one-third of women experience intimate partner violence (IPV) in their lifetime, often with TBI, yet remarkably little is known about the range of autopsy neuropathologies encountered in IPV. We report a prospectively accrued case series from a single institution, the New York City Office of Chief Medical Examiner, evaluated in partnership with the Brain Injury Research Center of Mount Sinai, using a multimodal protocol comprising clinical history review, ex vivo imaging in a small subset, and comprehensive neuropathological assessment by established consensus protocols.

View Article and Find Full Text PDF

Background: The main advantage of ultra-high field (UHF) magnetic resonance neuroimaging is theincreased signal-to-noise ratio (SNR) compared with lower field strength imaging. However, the wavelength effect associated with UHF MRI results in radiofrequency (RF) inhomogeneity, compromising whole brain coverage for many commercial coils. Approaches to resolving this issue of transmit field inhomogeneity include the design of parallel transmit systems (PTx), RF pulse design, and applying passive RF shimming such as high dielectric materials.

View Article and Find Full Text PDF

Perfusion fixation is a well-established technique in animal research to improve preservation quality in the study of many tissues, including the brain. There is a growing interest in using perfusion to fix postmortem human brain tissue to achieve the highest fidelity preservation for downstream high-resolution morphomolecular brain mapping studies. Numerous practical barriers arise when applying perfusion fixation in brain banking settings, including the large mass of the organ, degradation of vascular integrity and patency prior to the start of the procedure, and differing investigator goals sometimes necessitating part of the brain to be frozen.

View Article and Find Full Text PDF

Background Context: Endplate (EP) injury plays critical roles in painful IVD degeneration since Modic changes (MCs) are highly associated with pain. Models of EP microfracture that progress to painful conditions are needed to better understand pathophysiological mechanisms and screen therapeutics.

Purpose: Establish in vivo rat lumbar EP microfracture model and assess crosstalk between IVD, vertebra and spinal cord.

View Article and Find Full Text PDF

: Endplate (EP) injury plays critical roles in painful IVD degeneration since Modic changes (MCs) are highly associated with pain. Models of EP microfracture that progress to painful conditions are needed to better understand pathophysiological mechanisms and screen therapeutics. : Establish in vivo rat lumbar EP microfracture model with painful phenotype.

View Article and Find Full Text PDF

Purpose: Although functional MRI is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0. Increasing field strength enables higher spatial resolution and improved sensitivity to BOLD signal, but amplifies the effects of B0 inhomogeneity.

View Article and Find Full Text PDF

The importance of assessing neurochemical processes in the cetacean brain as a tool for monitoring their cognitive health and to indirectly model human neurodegenerative conditions is increasingly evident, although available data are largely semiquantitative. High-resolution MRI for post-mortem brains and stereology allow for quantitative assessments of the cetacean brain. In this study, we scanned two brains of bottlenose dolphins in a 7-Tesla (7T) MR scanner and assessed the connectivity of the inferior colliculi and ventral cochlear nuclei using diffusion tensor imaging (DTI).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) acutely damages the brain; this injury can evolve into chronic neurodegeneration. While much is known about the chronic effects arising from multiple mild TBIs, far less is known about the long-term effects of a single moderate to severe TBI. We found that a single moderate closed head injury to mice induces diffuse axonal injury within 1-day post-injury (DPI).

View Article and Find Full Text PDF

Purpose: The spinal cord contains sensorimotor neural circuits of scientific and clinical interest. However, spinal cord functional MRI (fMRI) is significantly more technically demanding than brain fMRI, due primarily to its proximity to the lungs. Accelerated echo-planar imaging (EPI) at 7 T is particularly vulnerable to k-space phase inconsistencies induced by motion or B fluctuation, during either autocalibration signal (ACS) or time-series acquisition.

View Article and Find Full Text PDF

Two years into the COVID-19 pandemic, there are few published accounts of postmortem SARS-CoV-2 pathology in children. We report 8 such cases (4 infants aged 7-36 weeks, 4 children aged 5-15 years). Four underwent magnetic resonance neuroimaging, to assist in identification of subtle lesions related to vascular compromise.

View Article and Find Full Text PDF

Purpose: Spinal cord gray-matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter.

View Article and Find Full Text PDF

Background: A key outcome for spinal cord stimulation for neurorehabilitation after injury is to strengthen corticospinal system control of the arm and hand. Non-invasive, compared with invasive, spinal stimulation minimizes risk but depends on muscle-specific actions for restorative functions.

Objective: We developed a large-animal (cat) model, combining computational and experimental techniques, to characterize neuromodulation with transcutaneous spinal direct current stimulation (tsDCS) for facilitation of corticospinal motor drive to specific forelimb muscles.

View Article and Find Full Text PDF

Sonicating deep brain regions with pulsed focused ultrasound using magnetic resonance imaging-guided neuronavigation single-element piezoelectric transducers is a new area of exploration for neuromodulation. Upper cranial nerves such as the trigeminal nerve and other nerves responsible for sensory/motor functions in the head may be potential targets for ultrasound pain therapy. The location of upper cranial nerves close to the skull base poses additional challenges when compared with conventional cortical or middle brain targets.

View Article and Find Full Text PDF

In recent years, new human magnetic resonance imaging systems operating at static magnetic fields strengths of 7 Tesla or higher have become available, providing better signal sensitivity compared with lower field strengths. However, imaging human-sized objects at such high field strength and associated precession frequencies is limited due to the technical challenges associated with the wavelength effect, which substantially disturb the transmit field uniformity over the human body when conventional coils are used. Here we report a novel passive inductively-coupled radiofrequency resonator array design with a simple structure that works in conjunction with conventional coils and requires only to be tuned to the scanner's operating frequency.

View Article and Find Full Text PDF

Background: Trigeminal Neuralgia (TN) is a chronic neurological disease that is strongly associated with neurovascular compression (NVC) of the trigeminal nerve near its root entry zone. The trigeminal nerve at the site of NVC has been extensively studied but limbic structures that are potentially involved in TN have not been adequately characterized. Specifically, the hippocampus is a stress-sensitive region which may be structurally impacted by chronic TN pain.

View Article and Find Full Text PDF
Article Synopsis
  • A new standardized quantitative MRI protocol for spinal cord imaging, called the spine generic protocol, has been developed to be used with 3T MRI systems from major manufacturers like GE, Philips, and Siemens.
  • The protocol includes specific imaging techniques for evaluating spinal cord macrostructure and microstructure, such as T1 and T2-weighted imaging to determine cross-sectional areas and diffusion-weighted imaging for white matter assessment.
  • An open-access document detailing the protocol is available online, providing a useful resource for researchers and clinicians aiming to enhance spinal cord imaging in neuroimaging practices.
View Article and Find Full Text PDF
Article Synopsis
  • - The paper by Cohen-Adad et al. introduces a standardized MRI protocol for evaluating spinal cord integrity, tested across 19 and 42 centers for single and multi-subject datasets respectively, involving a total of 260 participants.
  • - The datasets are openly available online, allowing researchers to access valuable data for analysis using tools like the Spinal Cord Toolbox, which produces normative values and statistics on variability across sites and manufacturers.
  • - The protocol demonstrated high reproducibility with less than 5% variation across different sites and manufacturers, aiming to enhance the accessibility and reliability of quantitative MRI assessments in spinal research.
View Article and Find Full Text PDF