In order for optical cavities to enable strong light-matter interactions for quantum metrology, networking, and scalability in quantum computing systems, their mirrors must have minimal losses. However, high-finesse dielectric cavity mirrors can degrade in ultra-high vacuum (UHV), increasing the challenges of upgrading to cavity-coupled quantum systems. We observe the optical degradation of high-finesse dielectric optical cavity mirrors after high-temperature UHV bake in the form of a substantial increase in surface roughness.
View Article and Find Full Text PDFNatural materials such as bone, wood, and bamboo can inspire the fabrication of stiff, lightweight structural materials. Biofilms are one of the most dominant forms of life in nature. However, little is known about their physical properties as a structural material.
View Article and Find Full Text PDFWe show that the wide-band gap compound semiconductors ZnO, ZnS, and CdS feature large photoplastic and photoelastic effects that are mediated by point defects. We measure the mechanical properties of ceramics and single crystals using nanoindentation, and we find that elasticity and plasticity vary strongly with moderate illumination. For instance, the elastic stiffness of ZnO can increase by greater than 40% due to blue illumination of intensity 1.
View Article and Find Full Text PDFThe creation of structural composites with combined strength, toughness, low density, and biocompatibility remains a long-standing challenge. On the other hand, bivalve marine shells--exhibit strength, stiffness, and toughness that surpass even that of the nacre that is the most widely mimicked model for structural composites. The superior mechanical properties of shells originate from their cross-lamella design, comprising CaCO mineral platelets arranged in an "interlocked" herringbone fashion.
View Article and Find Full Text PDF