Publications by authors named "Alan Saltiel"

Mitochondrial dysfunction is a characteristic trait of human and rodent obesity, insulin resistance and fatty liver disease. Here we show that high-fat diet (HFD) feeding causes mitochondrial fragmentation in inguinal white adipocytes from male mice, leading to reduced oxidative capacity by a process dependent on the small GTPase RalA. RalA expression and activity are increased in white adipocytes after HFD.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a characteristic trait of human and rodent obesity, insulin resistance, and fatty liver disease. Here we report that mitochondria undergo fragmentation and reduced oxidative capacity specifically in inguinal white adipose tissue after feeding mice high fat diet (HFD) by a process dependent on the small GTPase RalA. RalA expression and activity are increased in white adipocytes from mice fed HFD.

View Article and Find Full Text PDF

Insulin inhibits gluconeogenesis and stimulates glucose conversion to glycogen and lipids. How these activities are coordinated to prevent hypoglycemia and hepatosteatosis is unclear. Fructose-1,6-bisphosphatase (FBP1) is rate controlling for gluconeogenesis.

View Article and Find Full Text PDF

Cardiovascular diseases, especially atherosclerosis and its complications, are a leading cause of death. Inhibition of the noncanonical IκB kinases TANK-binding kinase 1 and IKKε with amlexanox restores insulin sensitivity and glucose homeostasis in diabetic mice and human patients. Here we report that amlexanox improves diet-induced hypertriglyceridemia and hypercholesterolemia in Western diet-fed (WD-fed) Ldlr-/- mice and protects against atherogenesis.

View Article and Find Full Text PDF

Compositional oscillations of the gut microbiome are essential for normal peripheral circadian rhythms, both of which are disrupted in diet-induced obesity (DIO). Although time-restricted feeding (TRF) maintains circadian synchrony and protects against DIO, its impact on the dynamics of the cecal gut microbiome is modest. Thus, other regions of the gut, particularly the ileum, the nexus for incretin and bile acid signaling, may play an important role in entraining peripheral circadian rhythms.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is strongly associated with obesity-related ectopic fat accumulation in the liver. Hepatic lipid accumulation encompasses a histological spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma. Given that dysregulated hepatic lipid metabolism may be an onset factor in NAFLD, understanding how hepatic lipid metabolism is modulated in healthy subjects and which steps are dysregulated in NAFLD subjects is crucial to identify effective therapeutic targets.

View Article and Find Full Text PDF
Article Synopsis
  • Dysregulation of energy balance in obesity features hormone resistance, particularly with less focus on catecholamines.
  • Research shows that the β3-adrenergic receptor, crucial for fat breakdown, is significantly downregulated after exposure to hormones and high-fat diets, leading to catecholamine resistance.
  • Findings suggest that this downregulation happens through pathways involving the TRIB1 protein, which affects the receptor's transcription and impacts energy expenditure, linking these mechanisms to obesity-related issues in both mice and humans.
View Article and Find Full Text PDF

While current thinking posits that insulin signaling to glucose transporter 4 (GLUT4) exocytic translocation and glucose uptake in skeletal muscle and adipocytes is controlled by phosphorylation-based signaling, many proteins in this pathway are acetylated on lysine residues. However, the importance of acetylation and lysine acetyltransferases to insulin-stimulated glucose uptake is incompletely defined. Here, we demonstrate that combined loss of the acetyltransferases E1A binding protein p300 (p300) and cAMP response element binding protein binding protein (CBP) in mouse skeletal muscle caused a complete loss of insulin-stimulated glucose uptake.

View Article and Find Full Text PDF

Adipocytes increase energy expenditure in response to prolonged sympathetic activation via persistent expression of uncoupling protein 1 (UCP1). Here we report that the regulation of glycogen metabolism by catecholamines is critical for UCP1 expression. Chronic β-adrenergic activation leads to increased glycogen accumulation in adipocytes expressing UCP1.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia, hyperinsulinemia, and insulin resistance (IR). During the early phase of T2D, insulin synthesis and secretion by pancreatic β cells is enhanced, which can lead to proinsulin misfolding that aggravates endoplasmic reticulum (ER) protein homeostasis in β cells. Moreover, increased circulating insulin may contribute to fatty liver disease.

View Article and Find Full Text PDF

The contribution of adipose-derived FGF21 to energy homeostasis is unclear. Here we show that browning of inguinal white adipose tissue (iWAT) by β-adrenergic agonists requires autocrine FGF21 signaling. Adipose-specific deletion of the FGF21 co-receptor β-Klotho renders mice unresponsive to β-adrenergic stimulation.

View Article and Find Full Text PDF

Activation of non-shivering thermogenesis is considered a promising approach to lower body weight in obesity. p62 deficiency in adipocytes reduces systemic energy expenditure but its role in sustaining mitochondrial function and thermogenesis remains unresolved. NBR1 shares a remarkable structural similarity with p62 and can interact with p62 through their respective PB1 domains.

View Article and Find Full Text PDF

Marking insulin's centennial, we share stories of researchers and clinicians whose seminal work has advanced our understanding of insulin, islet biology, insulin resistance, and diabetes. The past century of pursuing the "hormone of hormones" and advancing diabetes therapies is replete with stories of collaboration, perseverance, and triumph.

View Article and Find Full Text PDF

The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT).

View Article and Find Full Text PDF

The molecular mechanisms of cellular insulin action have been the focus of much investigation since the discovery of the hormone 100 years ago. Insulin action is impaired in metabolic syndrome, a condition known as insulin resistance. The actions of the hormone are initiated by binding to its receptor on the surface of target cells.

View Article and Find Full Text PDF

Adipocytes and adipose tissue play critical roles in the regulation of metabolic homeostasis. In obesity and obesity-associated metabolic diseases, immune cells infiltrate into adipose tissues. Interaction between adipocytes and immune cells re-shapes both metabolic and immune properties of adipose tissue and dramatically changes metabolic set points.

View Article and Find Full Text PDF

Hepatic TANK (TRAF family member associated NFκB activator)-binding kinase 1 (TBK1) activity is increased during obesity, and administration of a TBK1 inhibitor reduces fatty liver. Surprisingly, liver-specific TBK1 knockout in mice produces fatty liver by reducing fatty acid oxidation. TBK1 functions as a scaffolding protein to localize acyl-CoA synthetase long-chain family member 1 (ACSL1) to mitochondria, which generates acyl-CoAs that are channeled for β-oxidation.

View Article and Find Full Text PDF

Catecholamines stimulate the mobilization of stored triglycerides in adipocytes to provide fatty acids (FAs) for other tissues. However, a large proportion is taken back up and either oxidized or re-esterified. What controls the disposition of these FAs in adipocytes remains unknown.

View Article and Find Full Text PDF

Nonalcoholic fatty liver diseases (NAFLDs), especially nonalcoholic steatohepatitis (NASH), have become a major cause of liver transplant and liver-associated death. However, the pathogenesis of NASH is still unclear. Currently, there is no FDA-approved medication to treat this devastating disease.

View Article and Find Full Text PDF

Liver cell death has an essential role in nonalcoholic steatohepatitis (NASH). The activity of the energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) is repressed in NASH. Liver-specific AMPK knockout aggravated liver damage in mouse NASH models.

View Article and Find Full Text PDF

Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms .

View Article and Find Full Text PDF

Background & Aims: Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA.

Methods: Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens.

Results: We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra and major urinary protein-urokinase-type plasminogen activator/Il-17ra mice compared with wild-type mice.

View Article and Find Full Text PDF

Oxidized phospholipids (OxPLs), which arise due to oxidative stress, are proinflammatory and proatherogenic, but their roles in non-alcoholic steatohepatitis (NASH) are unknown. Here, we show that OxPLs accumulate in human and mouse NASH. Using a transgenic mouse that expresses a functional single-chain variable fragment of E06, a natural antibody that neutralizes OxPLs, we demonstrate the causal role of OxPLs in NASH.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates glucose, lipid, and energy homeostasis. While gene expression of FGF21 is regulated by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha in the fasted state, little is known about the regulation of trafficking and secretion of FGF21. We show that mice with a mutation in the Yip1 domain family, member 6 gene (- []; ) on a high-fat diet (HFD) have higher plasma levels of FGF21 than mice that do not carry this mutation (controls) and hepatocytes from mice secrete more FGF21 than hepatocytes from wild-type mice.

View Article and Find Full Text PDF