Biopharmaceutical process development often involves the use of small-scale bioreactors (SSBR) for optimizing media formulations and process conditions during scale up to commercial scale production. Two key process parameters (CPP) used in SSBR studies are protein titre and viable cell density (VCD). Here, we explore the efficacy of parallel polarized total synchronous fluorescence spectroscopy (TSFS) and Synchronous Light Scattering (SyLS) to qualitatively monitor these CPPs and quantitatively predict titre and VCD for a large-scale cell culture media optimization SSBR study.
View Article and Find Full Text PDFYeastolate is often used as a media supplement in industrial mammalian cell culture or as a major media component for microbial fermentations. Yeastolate variability can significantly affect process performance, but analysis is technically challenging because of its compositional complexity. However, what may be adequate for manufacturing purposes is a fast, inexpensive screening method to identify molecular variance and provide sufficient information for quality control purposes, without characterizing all the molecular components.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are promising anticancer therapeutics, which offer important advantages compared to more classical therapies. There are a variety of ADC critical quality attributes (CQAs) such as the protein structure, aggregation, and drug-to-antibody ratio (DAR), which all impact on potency, stability, and toxicity. Production processes can destabilize antibodies via a variety of physical and chemical stresses, and or by increased aggregation after conjugation of hydrophobic drugs.
View Article and Find Full Text PDFStudying the interaction between plasma proteins and liposomes is critical, particularly for their use as drug delivery systems. Here, the efficacy of anisotropy resolved multidimensional emission spectroscopy (ARMES) for investigating the interaction of human serum albumin (HSA) with liposomes was explored and compared to conventional spectroscopic techniques. Dynamic Light Scattering (DLS) and absorbance spectroscopy (with Multivariate Curve Resolution (MCR) modeling) indicated that the highest degree of liposome rupturing, and aggregation occurred in water, with less in ammonium bicarbonate buffer (ABC) and phosphate buffered saline (PBS).
View Article and Find Full Text PDFA homo-dimeric enzyme, thymidylate synthase (TS), has been a long-standing molecular target in chemotherapy. To further elucidate properties and interactions with ligands of wild-type mouse thymidylate synthase (mTS) and its two single mutants, H190A and W103G, spectroscopic and theoretical investigations have been employed. In these mutants, histidine at position 190 and tryptophan at position 103 are substituted with alanine and glycine, respectively.
View Article and Find Full Text PDFFluorescence Correlation Spectroscopy (FCS) studies of the interaction of polymers or proteins in solution are strongly affected by the viscosity and refractive index of the medium, and the effects are likely to be more significant with the use of short wavelength excitation (e.g., 405 nm diode lasers).
View Article and Find Full Text PDFProtein quantification during bioprocess monitoring is essential for biopharmaceutical manufacturing and is complicated by the complex chemical composition of the bioreactor broth. Here we present the early-stage development and optimization of a polarized total synchronous fluorescence spectroscopy (pTSFS) method for protein quantification in a hydrolysate-protein model (mimics clarified bioreactor broth samples) using a standard benchtop laboratory fluorometer. We used UV transmitting polarizers to provide wider range pTSFS spectra for screening of the four different TSFS spectra generated by the measurement: parallel (||), perpendicular (⊥), unpolarized (T) intensity spectra and anisotropy maps.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2021
Background: Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.
Methods: We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model.
Being able to measure the size and distribution of oligomers in solution is a critical issue in the manufacture and stability of insulin and other protein formulations. Measuring oligomers reliably can however be complicated, due to their fragile self-assembled structures, which are held together by weak forces. This can cause issues in chromatographic based methods, where dissociation or re-equilibration of oligomer populations can occur e.
View Article and Find Full Text PDFThe growing use of therapeutic proteins requires accurate analytical techniques for measuring biophysical and structural changes during manufacturing. This is particularly true for the PEGylation of proteins, because characterization of PEGylation reactions and products can often be difficult due to the relatively small impact on protein structure, the lack of an accessible polyethylene glycol (PEG) chromophore, and the heterogeneous final product mixtures. Intrinsic fluorescence spectroscopy is one potential solution due to its relatively high sensitivity to small changes in protein structure and its suitability for online or atline measurements.
View Article and Find Full Text PDFImmunoglobulin G (IgG) is often used as a starting material for the production of functionalised antibodies, like Antibody Drug Conjugates (ADCs), PEGlyated-conjugates, or radioimmunoconjugates. The gross structural quality of the protein starting material is, therefore, an important factor in determining final product composition, purity, and quality. In terms of structural quality, one needs to know both the aggregation content and the tertiary structure of the protein.
View Article and Find Full Text PDFTotal internal reflection fluorescence microscopy (TIRFM) is an important method in surface science and for the analysis of surface-bound macromolecules. Here, we developed and explored the use of a novel fluorescein isothiocyanate isomer I (FITC)-adsorbed monolayer for alignment and validation of TIRFM measurements and configurations. Aqueous solutions of FITC exist as several different protolytic forms (dianionic, anionic, neutral, and cationic) with each form having different emission characteristics.
View Article and Find Full Text PDFThe accurate fluorescence analysis of complex, multi-fluorophore containing proteins requires the use of multi-dimensional measurement techniques. For the measurement of intrinsic fluorescence from tyrosine (Tyr) and tryptophan (Trp) one needs tuneable UV excitation and for steady-state measurements like Excitation Emission Matrix (EEM) simple pulsed Xe lamps are commonly used. Unfortunately, simultaneous multi-dimensional wavelength and time resolved measurement of intrinsic protein fluorescence in the 260 to 400 nm spectral range are challenging and typically required the use of very complex tuneable laser systems or multiple single excitation wavelength sources.
View Article and Find Full Text PDFAnisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore systems like proteins that have complex overlapping emission bands. The method combines multidimensional fluorescence, anisotropy, and chemometrics to facilitate the differentiation of fluorophores with very similar emission properties. Here, we address the critical issue of standardizing the chemometric methods required to accurately extract spectral and anisotropy information from fluorophore mixtures using two standard sample sets: perylene in glycerol, and a mixture of Erythrosin B and Phloxine B with overlapping emission but different anisotropies.
View Article and Find Full Text PDFAnisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42).
View Article and Find Full Text PDFThe production of active pharmaceutical ingredients (APIs) is currently undergoing its biggest transformation in a century. The changes are based on the rapid and dramatic introduction of protein- and macromolecule-based drugs (collectively known as biopharmaceuticals) and can be traced back to the huge investment in biomedical science (in particular in genomics and proteomics) that has been ongoing since the 1970s. Biopharmaceuticals (or biologics) are manufactured using biological-expression systems (such as mammalian, bacterial, insect cells, etc.
View Article and Find Full Text PDFA new, fully automated, rapid method, referred to as kernel principal component analysis residual diagnosis (KPCARD), is proposed for removing cosmic ray artifacts (CRAs) in Raman spectra, and in particular for large Raman imaging datasets. KPCARD identifies CRAs via a statistical analysis of the residuals obtained at each wavenumber in the spectra. The method utilizes the stochastic nature of CRAs; therefore, the most significant components in principal component analysis (PCA) of large numbers of Raman spectra should not contain any CRAs.
View Article and Find Full Text PDFStructural analysis of proteins using the emission of intrinsic fluorophores is complicated by spectral overlap. Anisotropy resolved multidimensional emission spectroscopy (ARMES) overcame the overlap problem by the use of anisotropy, with chemometric analysis, to better resolve emission from different fluorophores. Total synchronous fluorescence scan (TSFS) provided information about all the fluorophores that contributed to emission while anisotropy provided information about the environment of each fluorophore.
View Article and Find Full Text PDFA robust and accurate analytical methodology for low-content (<0.1%) quantification in the solid-state using Raman spectroscopy, subsampling, and chemometrics was demonstrated using a piracetam-proline model. The method involved a 5-step process: collection of a relatively large number of spectra (8410) from each sample by Raman mapping, meticulous data pretreatment to remove spectral artifacts, use of a 0-100% concentration range partial least-squares (PLS) regression model to estimate concentration at each pixel, use of a more accurate, reduced concentration range PLS model to calculate analyte concentration at each pixel, and finally statistical analysis of all 8000+ concentration predictions to produce an accurate overall sample concentration.
View Article and Find Full Text PDFThe quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance.
View Article and Find Full Text PDFThe rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g.
View Article and Find Full Text PDFThis study demonstrates the application of fluorescence excitation-emission matrix (EEM) spectroscopy to the quantitative predictive analysis of recombinant glycoprotein production cultured in a Chinese hamster ovary (CHO) cell fed-batch process. The method relies on the fact that EEM spectra of complex solutions are very sensitive to compositional change. As the cultivation progressed, changes in the emission properties of various key fluorophores (e.
View Article and Find Full Text PDFCell culture media are very complex chemical mixtures that are one of the most important aspects in biopharmaceutical manufacturing. The complex composition of many media leads to materials that are inherently unstable and of particular concern, is media photo-damage which can adversely affect cell culture performance. This can be significant particularly with small scale transparent bioreactors and media containers are used for process development or research.
View Article and Find Full Text PDFAnal Chim Acta
September 2013
Being able to predict the final product yield at all stages in long-running, industrial, mammalian cell culture processes is vital for both operational efficiency, process consistency, and the implementation of quality by design (QbD) practices. Here we used Raman spectroscopy to monitor (in terms of glycoprotein yield prediction) a fed-batch fermentation from start to finish. Raman data were collected from 12 different time points in a Chinese hamster ovary (CHO) based manufacturing process and across 37 separate production runs.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2013
The detection and quantification of alternate polymorphs of active pharmaceutical ingredients (APIs), particularly at low concentrations is a key issue for the manufacture and analysis of solid-state formulations. Each polymorph can possess unique physical and chemical properties which in turn can directly affect factors such as solubility and bioavailability. Near infra-red (NIR) and Raman spectroscopies can be used for the rapid characterisation and quantification of polymorphs in solid samples.
View Article and Find Full Text PDF